From efcd9c78a295b16adc0d0105725e9a47b460be6f Mon Sep 17 00:00:00 2001 From: Columbus240 <8899730+Columbus240@users.noreply.github.com> Date: Mon, 15 Apr 2024 09:11:16 +0200 Subject: [PATCH] Some universes in `Sets` are necessarily equal --- Instance/Sets.v | 16 ++++++++-------- Theory/Adjunction.v | 6 +++--- 2 files changed, 11 insertions(+), 11 deletions(-) diff --git a/Instance/Sets.v b/Instance/Sets.v index fc4f480b..6f59176e 100644 --- a/Instance/Sets.v +++ b/Instance/Sets.v @@ -74,14 +74,14 @@ Qed. identity: typical identity of sets composition: composition of set maps, preserving equivalence *) -Program Definition Sets@{o h so sh p} : Category@{so sh p} := {| - obj := SetoidObject@{o p} : Type@{so}; - hom := λ x y, SetoidMorphism@{o h p} x y : Type@{sh}; - homset := @SetoidMorphism_Setoid@{o h p}; - id := @setoid_morphism_id@{o h p}; - compose := @setoid_morphism_compose@{o h p}; - - compose_respects := @setoid_morphism_compose_respects@{o h p} +Program Definition Sets@{o so} : Category@{so o o} := {| + obj := SetoidObject@{o o} : Type@{so}; + hom := λ x y, SetoidMorphism@{o o o} x y : Type@{o}; + homset := @SetoidMorphism_Setoid@{o o o}; + id := @setoid_morphism_id@{o o o}; + compose := @setoid_morphism_compose@{o o o}; + + compose_respects := @setoid_morphism_compose_respects@{o o o} |}. Require Import Category.Theory.Isomorphism. diff --git a/Theory/Adjunction.v b/Theory/Adjunction.v index fd5275da..b642af96 100644 --- a/Theory/Adjunction.v +++ b/Theory/Adjunction.v @@ -36,11 +36,11 @@ Context {U : C ⟶ D}. Reserved Notation "⌊ f ⌋". Reserved Notation "⌈ f ⌉". -(* o3 h3 p3 are universes larger than either C or D. *) -Class Adjunction@{o3 h3 p3 so sh sp} := { +(* o3 p3 are universes larger than either C or D. *) +Class Adjunction@{o3 p3 so sh sp} := { (* adj {x y} : F x ~{C}~> y ≊ x ~{D}~> U y *) adj {x y} : - @Isomorphism@{so sh p3} Sets@{o3 h3 so sh p3} + @Isomorphism@{so sh p3} Sets@{o3 so} {| carrier := @hom C (F x) y; is_setoid := @homset C (F x) y |} {| carrier := @hom D x (U y); is_setoid := @homset D x (U y) |} where "⌊ f ⌋" := (to adj f)