forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
onnx_utils.hpp
179 lines (157 loc) · 5.27 KB
/
onnx_utils.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include <fstream>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/text_format.h>
#include <iostream>
#include <onnx/onnx_pb.h>
#include <sstream>
#pragma once
namespace
{
//! Describes occurrence of a named dimension.
class NamedDimension
{
public:
//! TensorRT tensor.
nvinfer1::ITensor* tensor;
//! Index of tensor dimension to be named.
int32_t index;
//! ONNX "dim param" that is the name of the dimension.
std::string dimParam;
//! Construct a NamedDimension where the tensor will be filled in later.
NamedDimension(int32_t index_, const std::string& dimParam_)
: tensor(nullptr)
, index(index_)
, dimParam(dimParam_)
{
}
};
template <typename OnnxDims>
bool convertOnnxDims(OnnxDims const& onnxDims, nvinfer1::Dims& trtDims, std::vector<NamedDimension>& namedDims)
{
std::vector<int32_t> onnxDimsVec;
for (const auto& onnxDim : onnxDims)
{
// For empty dimensions, the ONNX specification says it's a dynamic dimension
if (!onnxDim.has_dim_value() && !onnxDim.has_dim_param())
{
onnxDimsVec.emplace_back(-1);
}
else
{
if (!onnxDim.dim_param().empty())
{
namedDims.emplace_back(static_cast<int32_t>(onnxDimsVec.size()), onnxDim.dim_param());
}
const int32_t dim = onnxDim.dim_param() == "" ? (onnxDim.dim_value() >= 0 ? onnxDim.dim_value() : -1) : -1;
onnxDimsVec.emplace_back(dim);
}
}
trtDims.nbDims = onnxDimsVec.size();
assert(trtDims.nbDims <= nvinfer1::Dims::MAX_DIMS);
std::copy(onnxDimsVec.begin(), onnxDimsVec.end(), trtDims.d);
return true;
}
// Removes raw data from the text representation of an ONNX model
void remove_raw_data_strings(std::string& s)
{
std::string::size_type beg = 0;
const std::string key = "raw_data: \"";
const std::string sub = "...";
while ((beg = s.find(key, beg)) != std::string::npos)
{
beg += key.length();
std::string::size_type end = beg - 1;
// Note: Must skip over escaped end-quotes
while (s[(end = s.find("\"", ++end)) - 1] == '\\')
{
}
if (end - beg > 128)
{ // Only remove large data strings
s.replace(beg, end - beg, "...");
}
beg += sub.length();
}
}
// Removes float_data, int32_data etc. from the text representation of an ONNX model
std::string remove_repeated_data_strings(std::string& s)
{
std::istringstream iss(s);
std::ostringstream oss;
bool is_repeat = false;
for (std::string line; std::getline(iss, line);)
{
if (line.find("float_data:") != std::string::npos || line.find("int32_data:") != std::string::npos
|| line.find("int64_data:") != std::string::npos)
{
if (!is_repeat)
{
is_repeat = true;
oss << line.substr(0, line.find(":") + 1) << " ...\n";
}
}
else
{
is_repeat = false;
oss << line << "\n";
}
}
return oss.str();
}
} // anonymous namespace
inline std::string pretty_print_onnx_to_string(::google::protobuf::Message const& message)
{
std::string s;
::google::protobuf::TextFormat::PrintToString(message, &s);
remove_raw_data_strings(s);
s = remove_repeated_data_strings(s);
return s;
}
inline std::ostream& operator<<(std::ostream& stream, ::ONNX_NAMESPACE::ModelProto const& message)
{
stream << pretty_print_onnx_to_string(message);
return stream;
}
inline std::ostream& operator<<(std::ostream& stream, ::ONNX_NAMESPACE::NodeProto const& message)
{
stream << pretty_print_onnx_to_string(message);
return stream;
}
//...
//...Consider moving all of the below functions into a stand alone
//...
inline bool ParseFromFile_WAR(google::protobuf::Message* msg, const char* filename)
{
std::ifstream stream(filename, std::ios::in | std::ios::binary);
if (!stream)
{
std::cerr << "Could not open file " << std::string(filename) << std::endl;
return false;
}
google::protobuf::io::IstreamInputStream rawInput(&stream);
google::protobuf::io::CodedInputStream coded_input(&rawInput);
// Note: This WARs the very low default size limit (64MB)
coded_input.SetTotalBytesLimit(std::numeric_limits<int>::max(), std::numeric_limits<int>::max() / 4);
return msg->ParseFromCodedStream(&coded_input);
}
inline bool ParseFromTextFile(google::protobuf::Message* msg, const char* filename)
{
std::ifstream stream(filename, std::ios::in);
if (!stream)
{
std::cerr << "Could not open file " << std::string(filename) << std::endl;
return false;
}
google::protobuf::io::IstreamInputStream rawInput(&stream);
return google::protobuf::TextFormat::Parse(&rawInput, msg);
}
inline std::string onnx_ir_version_string(int64_t ir_version = ::ONNX_NAMESPACE::IR_VERSION)
{
int onnx_ir_major = ir_version / 1000000;
int onnx_ir_minor = ir_version % 1000000 / 10000;
int onnx_ir_patch = ir_version % 10000;
return (std::to_string(onnx_ir_major) + "." + std::to_string(onnx_ir_minor) + "." + std::to_string(onnx_ir_patch));
}