-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathge_loss.py
73 lines (61 loc) · 1.94 KB
/
ge_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.functional as F
import torch.nn as nn
import math
import sklearn
import numpy as np
#import cupy as cp
from sklearn.metrics import r2_score
def log_poisson_loss(log_x, t):
loss = torch.mean(torch.exp(log_x) - t * log_x)
#lossの最小値が0になるようにoffsetを引き算している。
offset = torch.mean(t - t * torch.log(t))
return loss - offset
def log_r2_score(log_x, t):
t = t.to("cpu")
log_x = log_x.to("cpu")
x = torch.exp(log_x)
x = log_x
size = t.size(0)
t_temp = torch.chunk(t, size, dim=0)
x_temp = torch.chunk(x, size, dim=0)
all_score = 0.0
for i in range(size):
t_num = torch.squeeze(t_temp[i])
x_num = torch.squeeze(x_temp[i])
t_num = t_num.detach().numpy()
x_num = x_num.detach().numpy()
score = r2_score(x_num, t_num, multioutput='variance_weighted')
all_score += score
return all_score / size
def pearsonR(output, target, n_targets):
cost = []
for i in range(n_targets):
x = output[i]
y = target[i]
vx = x - torch.mean(x)
vy = y - torch.mean(y)
cost_temp = torch.sum(vx * vy) / (torch.sqrt(torch.sum(vx ** 2)) * torch.sqrt(torch.sum(vy ** 2)))
#cost = vx * vy * torch.rsqrt(torch.sum(vx ** 2)) * torch.rsqrt(torch.sum(vy ** 2))
cost_temp= cost_temp.detach().numpy()
cost.append(cost_temp)
return cost
def smoothing(sample_raw, n_targets):
#移動平均の範囲
window = 20
#w:(1024)
w = np.ones(window)/window
#(1024, n_targets)
avr_data = []
for i in range(n_targets):
sample = sample_raw[:, i]
sample_avr = np.convolve(sample, w, mode='same')
avr_data.append(sample_avr)
return avr_data
def smoothing_damy(sample_raw, n_targets):
#(1024, n_targets)
avr_data = []
for i in range(n_targets):
sample = sample_raw[:, i]
avr_data.append(sample)
return avr_data