-
Notifications
You must be signed in to change notification settings - Fork 305
/
attention.py
243 lines (220 loc) · 10.9 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright 2022 Xiaomi Corp. (author: Quandong Wang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import torch
import torch.nn as nn
from scaling import ScaledLinear
from torch import Tensor
from torch.nn.init import xavier_normal_
class MultiheadAttention(nn.Module):
r"""Allows the model to jointly attend to information
from different representation subspaces.
See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
Args:
embed_dim: Total dimension of the model.
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
Default: ``False``.
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
Examples::
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
__constants__ = ["batch_first"]
bias_k: Optional[torch.Tensor]
bias_v: Optional[torch.Tensor]
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
kdim=None,
vdim=None,
batch_first=False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
if self._qkv_same_embed_dim is False:
self.q_proj_weight = ScaledLinear(embed_dim, embed_dim, bias=bias)
self.k_proj_weight = ScaledLinear(self.kdim, embed_dim, bias=bias)
self.v_proj_weight = ScaledLinear(self.vdim, embed_dim, bias=bias)
self.register_parameter("in_proj_weight", None)
else:
self.in_proj_weight = ScaledLinear(embed_dim, 3 * embed_dim, bias=bias)
self.register_parameter("q_proj_weight", None)
self.register_parameter("k_proj_weight", None)
self.register_parameter("v_proj_weight", None)
if not bias:
self.register_parameter("in_proj_bias", None)
self.out_proj = ScaledLinear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = nn.Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
self.bias_v = nn.Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self._reset_parameters()
def _reset_parameters(self):
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
if "_qkv_same_embed_dim" not in state:
state["_qkv_same_embed_dim"] = True
super(MultiheadAttention, self).__setstate__(state)
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
r"""
Args:
query: Query embeddings of shape :math:`(L, N, E_q)` when ``batch_first=False`` or :math:`(N, L, E_q)`
when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size,
and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against
key-value pairs to produce the output. See "Attention Is All You Need" for more details.
key: Key embeddings of shape :math:`(S, N, E_k)` when ``batch_first=False`` or :math:`(N, S, E_k)` when
``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and
:math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details.
value: Value embeddings of shape :math:`(S, N, E_v)` when ``batch_first=False`` or :math:`(N, S, E_v)` when
``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and
:math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details.
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
to ignore for the purpose of attention (i.e. treat as "padding"). Binary and byte masks are supported.
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key``
value will be ignored.
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
Default: ``True``.
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
the attention weight.
Outputs:
- **attn_output** - Attention outputs of shape :math:`(L, N, E)` when ``batch_first=False`` or
:math:`(N, L, E)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is
the batch size, and :math:`E` is the embedding dimension ``embed_dim``.
- **attn_output_weights** - Attention output weights of shape :math:`(N, L, S)`, where :math:`N` is the batch
size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. Only returned
when ``need_weights=True``.
"""
if self.batch_first:
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
if not self._qkv_same_embed_dim:
q_proj_weight = (
self.q_proj_weight.get_weight()
if self.q_proj_weight is not None
else None
)
k_proj_weight = (
self.k_proj_weight.get_weight()
if self.k_proj_weight is not None
else None
)
v_proj_weight = (
self.v_proj_weight.get_weight()
if self.v_proj_weight is not None
else None
)
(
attn_output,
attn_output_weights,
) = nn.functional.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight.get_weight(),
self.in_proj_weight.get_bias(),
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.get_weight(),
self.out_proj.get_bias(),
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
use_separate_proj_weight=True,
q_proj_weight=q_proj_weight,
k_proj_weight=k_proj_weight,
v_proj_weight=v_proj_weight,
)
else:
(
attn_output,
attn_output_weights,
) = nn.functional.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight.get_weight(),
self.in_proj_weight.get_bias(),
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.get_weight(),
self.out_proj.get_bias(),
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
)
if self.batch_first:
return attn_output.transpose(1, 0), attn_output_weights
else:
return attn_output, attn_output_weights