-
Notifications
You must be signed in to change notification settings - Fork 305
/
jit_pretrained.py
executable file
·392 lines (348 loc) · 11.8 KB
/
jit_pretrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#!/usr/bin/env python3
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
# Zengwei)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads torchscript models, exported by `torch.jit.script()`
and uses them to decode waves.
You can use the following command to get the exported models:
./zipformer_mmi/export.py \
--exp-dir ./zipformer_mmi/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10 \
--jit 1
Usage of this script:
(1) 1best
./zipformer_mmi/jit_pretrained.py \
--nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method 1best \
/path/to/foo.wav \
/path/to/bar.wav
(2) nbest
./zipformer_mmi/jit_pretrained.py \
--nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--nbest-scale 1.2 \
--method nbest \
/path/to/foo.wav \
/path/to/bar.wav
(3) nbest-rescoring-LG
./zipformer_mmi/jit_pretrained.py \
--nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--nbest-scale 1.2 \
--method nbest-rescoring-LG \
/path/to/foo.wav \
/path/to/bar.wav
(4) nbest-rescoring-3-gram
./zipformer_mmi/jit_pretrained.py \
--nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--nbest-scale 1.2 \
--method nbest-rescoring-3-gram \
/path/to/foo.wav \
/path/to/bar.wav
(5) nbest-rescoring-4-gram
./zipformer_mmi/jit_pretrained.py \
--nn-model-filename ./zipformer_mmi/exp/cpu_jit.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--nbest-scale 1.2 \
--method nbest-rescoring-4-gram \
/path/to/foo.wav \
/path/to/bar.wav
"""
import argparse
import logging
import math
from pathlib import Path
from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from decode import get_decoding_params
from torch.nn.utils.rnn import pad_sequence
from train import get_params
from icefall.decode import (
get_lattice,
nbest_decoding,
nbest_rescore_with_LM,
one_best_decoding,
)
from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler
from icefall.utils import get_texts
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--nn-model-filename",
type=str,
required=True,
help="Path to the torchscript model cpu_jit.pt",
)
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to bpe.model.""",
)
parser.add_argument(
"--method",
type=str,
default="1best",
help="""Decoding method. Use HP as decoding graph, where H is
ctc_topo and P is token-level bi-gram lm.
Supported values are:
- (1) 1best. Extract the best path from the decoding lattice as the
decoding result.
- (2) nbest. Extract n paths from the decoding lattice; the path
with the highest score is the decoding result.
- (4) nbest-rescoring-LG. Extract n paths from the decoding lattice,
rescore them with an word-level 3-gram LM, the path with the
highest score is the decoding result.
- (5) nbest-rescoring-3-gram. Extract n paths from the decoding
lattice, rescore them with an token-level 3-gram LM, the path with
the highest score is the decoding result.
- (6) nbest-rescoring-4-gram. Extract n paths from the decoding
lattice, rescore them with an token-level 4-gram LM, the path with
the highest score is the decoding result.
""",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_bpe_500",
help="The lang dir containing word table and LG graph",
)
parser.add_argument(
"--num-paths",
type=int,
default=100,
help="""Number of paths for n-best based decoding method.
Used only when "method" is one of the following values:
nbest, nbest-rescoring, and nbest-oracle
""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=1.2,
help="""The scale to be applied to `lattice.scores`.
It's needed if you use any kinds of n-best based rescoring.
Used only when "method" is one of the following values:
nbest, nbest-rescoring, and nbest-oracle
A smaller value results in more unique paths.
""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=0.1,
help="""
Used when method is nbest-rescoring-LG, nbest-rescoring-3-gram,
and nbest-rescoring-4-gram.
It specifies the scale for n-gram LM scores.
(Note: You need to tune it on a dataset.)
""",
)
parser.add_argument(
"--hp-scale",
type=float,
default=1.0,
help="""The scale to be applied to `ctc_topo_P.scores`.
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float = 16000
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
params = get_params()
# add decoding params
params.update(get_decoding_params())
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
model = torch.jit.load(params.nn_model_filename)
model.eval()
model.to(device)
sp = spm.SentencePieceProcessor()
sp.load(args.bpe_model)
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
opts.mel_opts.high_freq = -400
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {args.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(
features,
batch_first=True,
padding_value=math.log(1e-10),
)
feature_lengths = torch.tensor(feature_lengths, device=device)
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(str(params.lang_dir / "bpe.model"))
mmi_graph_compiler = MmiTrainingGraphCompiler(
params.lang_dir,
uniq_filename="lexicon.txt",
device=device,
oov="<UNK>",
sos_id=1,
eos_id=1,
)
HP = mmi_graph_compiler.ctc_topo_P
HP.scores *= params.hp_scale
if not hasattr(HP, "lm_scores"):
HP.lm_scores = HP.scores.clone()
method = params.method
assert method in (
"1best",
"nbest",
"nbest-rescoring-LG", # word-level 3-gram lm
"nbest-rescoring-3-gram", # token-level 3-gram lm
"nbest-rescoring-4-gram", # token-level 4-gram lm
)
# loading language model for rescoring
LM = None
if method == "nbest-rescoring-LG":
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
LG = k2.Fsa.from_dict(torch.load(lg_filename, map_location=device))
LG = k2.Fsa.from_fsas([LG]).to(device)
LG.lm_scores = LG.scores.clone()
LM = LG
elif method in ["nbest-rescoring-3-gram", "nbest-rescoring-4-gram"]:
order = method[-6]
assert order in ("3", "4")
order = int(order)
logging.info(f"Loading pre-compiled {order}gram.pt")
d = torch.load(params.lang_dir / f"{order}gram.pt", map_location=device)
G = k2.Fsa.from_dict(d)
G.lm_scores = G.scores.clone()
LM = G
# Encoder forward
nnet_output, encoder_out_lens = model(x=features, x_lens=feature_lengths)
batch_size = nnet_output.shape[0]
supervision_segments = torch.tensor(
[
[i, 0, feature_lengths[i] // params.subsampling_factor]
for i in range(batch_size)
],
dtype=torch.int32,
)
lattice = get_lattice(
nnet_output=nnet_output,
decoding_graph=HP,
supervision_segments=supervision_segments,
search_beam=params.search_beam,
output_beam=params.output_beam,
min_active_states=params.min_active_states,
max_active_states=params.max_active_states,
subsampling_factor=params.subsampling_factor,
)
if method in ["1best", "nbest"]:
if method == "1best":
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
else:
best_path = nbest_decoding(
lattice=lattice,
num_paths=params.num_paths,
use_double_scores=params.use_double_scores,
nbest_scale=params.nbest_scale,
)
else:
best_path_dict = nbest_rescore_with_LM(
lattice=lattice,
LM=LM,
num_paths=params.num_paths,
lm_scale_list=[params.ngram_lm_scale],
nbest_scale=params.nbest_scale,
)
best_path = next(iter(best_path_dict.values()))
# Note: `best_path.aux_labels` contains token IDs, not word IDs
# since we are using HP, not HLG here.
#
# token_ids is a lit-of-list of IDs
token_ids = get_texts(best_path)
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
hyps = bpe_model.decode(token_ids)
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
hyps = [s.split() for s in hyps]
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()