|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +""" |
| 4 | +This script shows how to use audio tagging Python APIs to tag a file. |
| 5 | +
|
| 6 | +Please read the code to download the required model files and test wave file. |
| 7 | +""" |
| 8 | + |
| 9 | +import logging |
| 10 | +import time |
| 11 | +from pathlib import Path |
| 12 | + |
| 13 | +import numpy as np |
| 14 | +import sherpa_onnx |
| 15 | +import soundfile as sf |
| 16 | + |
| 17 | + |
| 18 | +def read_test_wave(): |
| 19 | + # Please download the model files and test wave files from |
| 20 | + # https://github.com/k2-fsa/sherpa-onnx/releases/tag/audio-tagging-models |
| 21 | + test_wave = "./sherpa-onnx-ced-mini-audio-tagging-2024-04-19/test_wavs/6.wav" |
| 22 | + |
| 23 | + if not Path(test_wave).is_file(): |
| 24 | + raise ValueError( |
| 25 | + f"Please download {test_wave} from " |
| 26 | + "https://github.com/k2-fsa/sherpa-onnx/releases/tag/audio-tagging-models" |
| 27 | + ) |
| 28 | + |
| 29 | + # See https://python-soundfile.readthedocs.io/en/0.11.0/#soundfile.read |
| 30 | + data, sample_rate = sf.read( |
| 31 | + test_wave, |
| 32 | + always_2d=True, |
| 33 | + dtype="float32", |
| 34 | + ) |
| 35 | + data = data[:, 0] # use only the first channel |
| 36 | + samples = np.ascontiguousarray(data) |
| 37 | + |
| 38 | + # samples is a 1-d array of dtype float32 |
| 39 | + # sample_rate is a scalar |
| 40 | + return samples, sample_rate |
| 41 | + |
| 42 | + |
| 43 | +def create_audio_tagger(): |
| 44 | + # Please download the model files and test wave files from |
| 45 | + # https://github.com/k2-fsa/sherpa-onnx/releases/tag/audio-tagging-models |
| 46 | + model_file = "./sherpa-onnx-ced-mini-audio-tagging-2024-04-19/model.int8.onnx" |
| 47 | + label_file = ( |
| 48 | + "./sherpa-onnx-ced-mini-audio-tagging-2024-04-19/class_labels_indices.csv" |
| 49 | + ) |
| 50 | + |
| 51 | + if not Path(model_file).is_file(): |
| 52 | + raise ValueError( |
| 53 | + f"Please download {model_file} from " |
| 54 | + "https://github.com/k2-fsa/sherpa-onnx/releases/tag/audio-tagging-models" |
| 55 | + ) |
| 56 | + |
| 57 | + if not Path(label_file).is_file(): |
| 58 | + raise ValueError( |
| 59 | + f"Please download {label_file} from " |
| 60 | + "https://github.com/k2-fsa/sherpa-onnx/releases/tag/audio-tagging-models" |
| 61 | + ) |
| 62 | + |
| 63 | + config = sherpa_onnx.AudioTaggingConfig( |
| 64 | + model=sherpa_onnx.AudioTaggingModelConfig( |
| 65 | + ced=model_file, |
| 66 | + num_threads=1, |
| 67 | + debug=True, |
| 68 | + provider="cpu", |
| 69 | + ), |
| 70 | + labels=label_file, |
| 71 | + top_k=5, |
| 72 | + ) |
| 73 | + if not config.validate(): |
| 74 | + raise ValueError(f"Please check the config: {config}") |
| 75 | + |
| 76 | + print(config) |
| 77 | + |
| 78 | + return sherpa_onnx.AudioTagging(config) |
| 79 | + |
| 80 | + |
| 81 | +def main(): |
| 82 | + logging.info("Create audio tagger") |
| 83 | + audio_tagger = create_audio_tagger() |
| 84 | + |
| 85 | + logging.info("Read test wave") |
| 86 | + samples, sample_rate = read_test_wave() |
| 87 | + |
| 88 | + logging.info("Computing") |
| 89 | + |
| 90 | + start_time = time.time() |
| 91 | + |
| 92 | + stream = audio_tagger.create_stream() |
| 93 | + stream.accept_waveform(sample_rate=sample_rate, waveform=samples) |
| 94 | + result = audio_tagger.compute(stream) |
| 95 | + end_time = time.time() |
| 96 | + |
| 97 | + elapsed_seconds = end_time - start_time |
| 98 | + audio_duration = len(samples) / sample_rate |
| 99 | + |
| 100 | + real_time_factor = elapsed_seconds / audio_duration |
| 101 | + logging.info(f"Elapsed seconds: {elapsed_seconds:.3f}") |
| 102 | + logging.info(f"Audio duration in seconds: {audio_duration:.3f}") |
| 103 | + logging.info( |
| 104 | + f"RTF: {elapsed_seconds:.3f}/{audio_duration:.3f} = {real_time_factor:.3f}" |
| 105 | + ) |
| 106 | + |
| 107 | + s = "\n" |
| 108 | + for i, e in enumerate(result): |
| 109 | + s += f"{i}: {e}\n" |
| 110 | + |
| 111 | + logging.info(s) |
| 112 | + |
| 113 | + |
| 114 | +if __name__ == "__main__": |
| 115 | + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" |
| 116 | + |
| 117 | + logging.basicConfig(format=formatter, level=logging.INFO) |
| 118 | + |
| 119 | + main() |
0 commit comments