All datasets go into a data
directory at the root of the project.
You can use for example mkdir data
or ln -s /my/data/storage data
to create this directory.
In the end the overall directory structure should be as follows (generated with tree data -L 2
).
data
├── modelnet40_ply_hdf5_2048
│ ├── ply_data_test0.h5
│ ├── ply_data_test_0_id2file.json
│ ├── ply_data_test1.h5
│ ├── ply_data_test_1_id2file.json
│ ├── ply_data_train0.h5
│ ├── ply_data_train_0_id2file.json
│ ├── ply_data_train1.h5
│ ├── ply_data_train_1_id2file.json
│ ├── ply_data_train2.h5
│ ├── ply_data_train_2_id2file.json
│ ├── ply_data_train3.h5
│ ├── ply_data_train_3_id2file.json
│ ├── ply_data_train4.h5
│ ├── ply_data_train_4_id2file.json
│ ├── shape_names.txt
│ ├── test_files.txt
│ └── train_files.txt
├── ModelNetFewshot
│ ├── 10way_10shot
│ ├── 10way_20shot
│ ├── 5way_10shot
│ └── 5way_20shot
├── ScanObjectNN
│ ├── main_split
│ ├── main_split_nobg
│ ├── split1
│ ├── split1_nobg
│ ├── split2
│ ├── split2_nobg
│ ├── split3
│ ├── split3_nobg
│ ├── split4
│ └── split4_nobg
├── ShapeNet55
│ ├── shapenet_pc
│ ├── shapenet_test.npz
│ ├── shapenet_train.npz
│ ├── test.txt
│ ├── train_25.txt
│ ├── train_50.txt
│ ├── train_75.txt
│ └── train.txt
└── shapenetcore_partanno_segmentation_benchmark_v0_normal
├── 02691156
├── 02773838
├── 02954340
├── 02958343
├── 03001627
├── 03261776
├── 03467517
├── 03624134
├── 03636649
├── 03642806
├── 03790512
├── 03797390
├── 03948459
├── 04099429
├── 04225987
├── 04379243
├── synsetoffset2category.txt
└── train_test_split
Download ShapeNet55.zip
from Google Drive into the data
directory (see also Point-BERT DATASET.md).
Then
cd data
unzip ShapeNet55.zip
cp ../.metadata/ShapeNet55/* ShapeNet55/ # train.txt and test.txt split files
cd ..
python -m point2vec.datasets.process.shapenet_npz
The last step saves the whole dataset in shapenet_train.npz
and shapenet_test.npz
files which are used by the --data.in_memory true
flag.
This is recommended if you have slow disk I/O, and necessary if you want to reproduce the exact results from our paper.
Download h5_files.zip
from the official Website into the data
directory by agreeing to the Terms of Use.
Then
cd data
unzip h5_files.zip
mv h5_files ScanObjectNN
cd data
wget --no-check-certificate https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip
unzip modelnet40_ply_hdf5_2048.zip
Download the directory from Google Drive into the data
directory (see also Point-BERT DATASET.md).
cd data
wget --no-check-certificate https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_v0_normal.zip
unzip shapenetcore_partanno_segmentation_benchmark_v0_normal.zip