forked from nnadl-ja/nnadl_site_ja
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
299 lines (251 loc) · 20.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
<!DOCTYPE html>
<html lang="en">
<!-- Produced from a LaTeX source file. Note that the production is done -->
<!-- by a very rough-and-ready (and buggy) script, so the HTML and other -->
<!-- code is quite ugly! Later versions should be better. -->
<meta charset="utf-8">
<meta name="citation_title" content="ニューラルネットワークと深層学習">
<meta name="citation_author" content="Nielsen, Michael A.">
<meta name="citation_publication_date" content="2014">
<meta name="citation_fulltext_html_url" content="http://neuralnetworksanddeeplearning.com">
<meta name="citation_publisher" content="Determination Press">
<link rel="icon" href="nnadl_favicon.ICO" />
<!-- <title></title>-->
<title>Neural networks and deep learning</title>
<script src="assets/jquery.min.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {inlineMath: [['$','$']]},
"HTML-CSS":
{scale: 92},
TeX: { equationNumbers: { autoNumber: "AMS" }}});
</script>
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<link href="assets/style.css" rel="stylesheet">
<link href="assets/pygments.css" rel="stylesheet">
<style>
/* Adapted from */
/* https://groups.google.com/d/msg/mathjax-users/jqQxrmeG48o/oAaivLgLN90J, */
/* by David Cervone */
@font-face {
font-family: 'MJX_Math';
src: url('http://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/eot/MathJax_Math-Italic.eot'); /* IE9 Compat Modes */
src: url('http://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/eot/MathJax_Math-Italic.eot?iefix') format('eot'),
url('http://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/woff/MathJax_Math-Italic.woff') format('woff'),
url('http://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/otf/MathJax_Math-Italic.otf') format('opentype'),
url('http://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/svg/MathJax_Math-Italic.svg#MathJax_Math-Italic') format('svg');
}
@font-face {
font-family: 'MJX_Main';
src: url('http://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/eot/MathJax_Main-Regular.eot'); /* IE9 Compat Modes */
src: url('http://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/eot/MathJax_Main-Regular.eot?iefix') format('eot'),
url('http://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/woff/MathJax_Main-Regular.woff') format('woff'),
url('http://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/otf/MathJax_Main-Regular.otf') format('opentype'),
url('http://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/svg/MathJax_Main-Regular.svg#MathJax_Main-Regular') format('svg');
}
</style>
</head>
<body>
<!--<div class="nonumber_header"><h2><a href="index.html">Neural networks and deep learning</a></h2></div>-->
<div class="nonumber_header"><h2><a href="index.html">ニューラルネットワークと深層学習</a></h2></div>
<div class="section"><div id="toc">
<p class="toc_title"><a href="index.html">ニューラルネットワークと深層学習</a></p><p class="toc_not_mainchapter"><a href="about.html">What this book is about</a></p><p class="toc_not_mainchapter"><a href="exercises_and_problems.html">On the exercises and problems</a></p><p class='toc_mainchapter'><a id="toc_using_neural_nets_to_recognize_handwritten_digits_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_using_neural_nets_to_recognize_handwritten_digits" src="images/arrow.png" width="15px"></a><a href="chap1.html">ニューラルネットワークを用いた手書き文字認識</a><div id="toc_using_neural_nets_to_recognize_handwritten_digits" style="display: none;"><p class="toc_section"><ul><a href="chap1.html#perceptrons"><li>Perceptrons</li></a><a href="chap1.html#sigmoid_neurons"><li>Sigmoid neurons</li></a><a href="chap1.html#the_architecture_of_neural_networks"><li>The architecture of neural networks</li></a><a href="chap1.html#a_simple_network_to_classify_handwritten_digits"><li>A simple network to classify handwritten digits</li></a><a href="chap1.html#learning_with_gradient_descent"><li>Learning with gradient descent</li></a><a href="chap1.html#implementing_our_network_to_classify_digits"><li>Implementing our network to classify digits</li></a><a href="chap1.html#toward_deep_learning"><li>Toward deep learning</li></a></ul></p></div>
<script>
$('#toc_using_neural_nets_to_recognize_handwritten_digits_reveal').click(function() {
var src = $('#toc_img_using_neural_nets_to_recognize_handwritten_digits').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_using_neural_nets_to_recognize_handwritten_digits").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_using_neural_nets_to_recognize_handwritten_digits").attr('src', 'images/arrow.png');
};
$('#toc_using_neural_nets_to_recognize_handwritten_digits').toggle('fast', function() {});
});</script><p class='toc_mainchapter'><a id="toc_how_the_backpropagation_algorithm_works_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_how_the_backpropagation_algorithm_works" src="images/arrow.png" width="15px"></a><a href="chap2.html">逆伝播の仕組み</a><div id="toc_how_the_backpropagation_algorithm_works" style="display: none;"><p class="toc_section"><ul><a href="chap2.html#warm_up_a_fast_matrix-based_approach_to_computing_the_output_from_a_neural_network"><li>Warm up: a fast matrix-based approach to computing the output from a neural network</li></a><a href="chap2.html#the_two_assumptions_we_need_about_the_cost_function"><li>The two assumptions we need about the cost function</li></a><a href="chap2.html#the_hadamard_product_$s_\odot_t$"><li>The Hadamard product, $s \odot t$</li></a><a href="chap2.html#the_four_fundamental_equations_behind_backpropagation"><li>The four fundamental equations behind backpropagation</li></a><a href="chap2.html#proof_of_the_four_fundamental_equations_(optional)"><li>Proof of the four fundamental equations (optional)</li></a><a href="chap2.html#the_backpropagation_algorithm"><li>The backpropagation algorithm</li></a><a href="chap2.html#the_code_for_backpropagation"><li>The code for backpropagation</li></a><a href="chap2.html#in_what_sense_is_backpropagation_a_fast_algorithm"><li>In what sense is backpropagation a fast algorithm?</li></a><a href="chap2.html#backpropagation_the_big_picture"><li>Backpropagation: the big picture</li></a></ul></p></div>
<script>
$('#toc_how_the_backpropagation_algorithm_works_reveal').click(function() {
var src = $('#toc_img_how_the_backpropagation_algorithm_works').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_how_the_backpropagation_algorithm_works").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_how_the_backpropagation_algorithm_works").attr('src', 'images/arrow.png');
};
$('#toc_how_the_backpropagation_algorithm_works').toggle('fast', function() {});
});</script><p class='toc_mainchapter'><a id="toc_improving_the_way_neural_networks_learn_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_improving_the_way_neural_networks_learn" src="images/arrow.png" width="15px"></a><a href="chap3.html">ニューラルネットワークの学習の改善</a><div id="toc_improving_the_way_neural_networks_learn" style="display: none;"><p class="toc_section"><ul><a href="chap3.html#the_cross-entropy_cost_function"><li>The cross-entropy cost function</li></a><a href="chap3.html#overfitting_and_regularization"><li>Overfitting and regularization</li></a><a href="chap3.html#weight_initialization"><li>Weight initialization</li></a><a href="chap3.html#handwriting_recognition_revisited_the_code"><li>Handwriting recognition revisited: the code</li></a><a href="chap3.html#how_to_choose_a_neural_network's_hyper-parameters"><li>How to choose a neural network's hyper-parameters?</li></a><a href="chap3.html#other_techniques"><li>Other techniques</li></a></ul></p></div>
<script>
$('#toc_improving_the_way_neural_networks_learn_reveal').click(function() {
var src = $('#toc_img_improving_the_way_neural_networks_learn').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_improving_the_way_neural_networks_learn").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_improving_the_way_neural_networks_learn").attr('src', 'images/arrow.png');
};
$('#toc_improving_the_way_neural_networks_learn').toggle('fast', function() {});
});</script><p class='toc_mainchapter'><a id="toc_a_visual_proof_that_neural_nets_can_compute_any_function_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_a_visual_proof_that_neural_nets_can_compute_any_function" src="images/arrow.png" width="15px"></a><a href="chap4.html">ニューラルネットワークが任意の関数を表現できることの視覚的証明</a><div id="toc_a_visual_proof_that_neural_nets_can_compute_any_function" style="display: none;"><p class="toc_section"><ul><a href="chap4.html#two_caveats"><li>Two caveats</li></a><a href="chap4.html#universality_with_one_input_and_one_output"><li>Universality with one input and one output</li></a><a href="chap4.html#many_input_variables"><li>Many input variables</li></a><a href="chap4.html#extension_beyond_sigmoid_neurons"><li>Extension beyond sigmoid neurons</li></a><a href="chap4.html#fixing_up_the_step_functions"><li>Fixing up the step functions</li></a><a href="chap4.html#conclusion"><li>Conclusion</li></a></ul></p></div>
<script>
$('#toc_a_visual_proof_that_neural_nets_can_compute_any_function_reveal').click(function() {
var src = $('#toc_img_a_visual_proof_that_neural_nets_can_compute_any_function').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_a_visual_proof_that_neural_nets_can_compute_any_function").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_a_visual_proof_that_neural_nets_can_compute_any_function").attr('src', 'images/arrow.png');
};
$('#toc_a_visual_proof_that_neural_nets_can_compute_any_function').toggle('fast', function() {});
});</script><p class='toc_mainchapter'><a id="toc_why_are_deep_neural_networks_hard_to_train_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_why_are_deep_neural_networks_hard_to_train" src="images/arrow.png" width="15px"></a><a href="chap5.html">ニューラルネットワークを訓練するのはなぜ難しいのか</a><div id="toc_why_are_deep_neural_networks_hard_to_train" style="display: none;"><p class="toc_section"><ul><a href="chap5.html#the_vanishing_gradient_problem"><li>The vanishing gradient problem</li></a><a href="chap5.html#what's_causing_the_vanishing_gradient_problem_unstable_gradients_in_deep_neural_nets"><li>What's causing the vanishing gradient problem? Unstable gradients in deep neural nets</li></a><a href="chap5.html#unstable_gradients_in_more_complex_networks"><li>Unstable gradients in more complex networks</li></a><a href="chap5.html#other_obstacles_to_deep_learning"><li>Other obstacles to deep learning</li></a></ul></p></div>
<script>
$('#toc_why_are_deep_neural_networks_hard_to_train_reveal').click(function() {
var src = $('#toc_img_why_are_deep_neural_networks_hard_to_train').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_why_are_deep_neural_networks_hard_to_train").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_why_are_deep_neural_networks_hard_to_train").attr('src', 'images/arrow.png');
};
$('#toc_why_are_deep_neural_networks_hard_to_train').toggle('fast', function() {});
});</script><p class='toc_mainchapter'><a id="toc_deep_learning_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_deep_learning" src="images/arrow.png" width="15px"></a>Deep learning<div id="toc_deep_learning" style="display: none;"><p class="toc_section"><ul><li>Convolutional neural networks</li><li>Pretraining</li><li>Recurrent neural networks, Boltzmann machines, and other models</li><li>Is there a universal thinking algorithm?</li><li>On the future of neural networks</li></ul></p></div>
<script>
$('#toc_deep_learning_reveal').click(function() {
var src = $('#toc_img_deep_learning').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_deep_learning").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_deep_learning").attr('src', 'images/arrow.png');
};
$('#toc_deep_learning').toggle('fast', function() {});
});</script><p class="toc_not_mainchapter"><a href="acknowledgements.html">Acknowledgements</a></p><p class="toc_not_mainchapter"><a href="faq.html">Frequently Asked Questions</a></p>
<hr>
<span class="sidebar_title">Sponsors</span>
<br/>
<a href='http://www.ersatz1.com/'><img src='assets/ersatz.png' width='140px' style="padding: 0px 0px 10px 8px; border-style: none;"></a>
<a href='http://gsquaredcapital.com/'><img src='assets/gsquared.png' width='150px' style="padding: 0px 0px 10px 10px; border-style: none;"></a>
<a href='http://www.tineye.com'><img src='assets/tineye.png' width='150px'
style="padding: 0px 0px 10px 8px; border-style: none;"></a>
<a href='http://www.visionsmarts.com'><img
src='assets/visionsmarts.png' width='160px' style="padding: 0px 0px
0px 0px; border-style: none;"></a> <br/>
<!--
<p class="sidebar">Thanks to all the <a
href="supporters.html">supporters</a> who made the book possible.
Thanks also to all the contributors to the <a
href="bugfinder.html">Bugfinder Hall of Fame</a>. </p>
<p class="sidebar">The book is currently a beta release, and is still
under active development. Please send error reports to
[email protected]. For other enquiries, please see the <a
href="faq.html">FAQ</a> first.</p>
-->
<p class="sidebar">著者と共にこの本を作り出してくださった<a
href="supporters.html">サポーター</a>の皆様に感謝いたします。
また、<a
href="bugfinder.html">バグ発見者の殿堂</a>に名を連ねる皆様にも感謝いたします。
また、日本語版の出版にあたっては、<a
href="translators.html">翻訳者</a>の皆様に深く感謝いたします。
</p>
<p class="sidebar">この本は目下のところベータ版で、開発続行中です。
エラーレポートは [email protected] まで、日本語版に関する質問は [email protected] までお送りください。
その他の質問については、まずは<a
href="faq.html">FAQ</a>をごらんください。</p>
<hr>
<span class="sidebar_title">Resources</span>
<p class="sidebar">
<a href="https://github.com/mnielsen/neural-networks-and-deep-learning">Code repository</a></p>
<p class="sidebar">
<a href="http://eepurl.com/BYr9L">Mailing list for book announcements</a>
</p>
<p class="sidebar">
<a href="http://eepurl.com/0Xxjb">Michael Nielsen's project announcement mailing list</a>
</p>
<hr>
<a href="http://michaelnielsen.org"><img src="assets/Michael_Nielsen_Web_Small.jpg" width="160px" style="border-style: none;"/></a>
<p class="sidebar">
著:<a href="http://michaelnielsen.org">Michael Nielsen</a> / 2014年9月-12月 <br > 訳:<a href="https://github.com/nnadl-ja/nnadl_site_ja">「ニューラルネットワークと深層学習」翻訳プロジェクト</a>
</p>
</div>
<p>
<!--
<em>Neural networks and deep learning</em> is a free online book. The
book will teach you about:
-->
「ニューラルネットワークと深層学習」は無料のオンライン書籍です。
この本では、次のような内容を扱います。
<!--
<ul>
<li>Neural networks, a beautiful biologically-inspired programming
paradigm which enables a computer to learn from observational data
<li>Deep learning, a powerful set of techniques for learning in neural
networks
</ul>-->
<ul>
<li>ニューラルネットワーク:コンピュータに、観測データにもとづいて学習する能力を与える、生物学にヒントを得たプログラミングパラダイム。
<li>深層学習:ニューラルネットワークに学習をさせるための強力な手法。
</ul>
<!--
Neural networks and deep learning currently provide the best solutions
to many problems in image recognition, speech recognition, and natural
language processing. This book will teach you the core concepts
behind neural networks and deep learning. -->
ニューラルネットワークと深層学習は、現時点において、画像認識、音声認識、自然言語処理などの分野の様々な
問題に対して、最も優れた解決策を与える手法です。この本では、ニューラルネットワークと深層学習の背後にある
核心的概念を扱います。
</p>
<p>
<!--
The book is currently an incomplete beta draft. More chapters will be
added over the coming months. For now, you can:
-->
この本は現時点では未完成のベータ版原稿です。著者によれば、数ヶ月のうちに追加の章を執筆するつもりのようです。
今は、以下の章が読めます。。
</p>
<p>
<ul>
<!--<li><b><a href="chap1.html">Read Chapter 1</a></b>, which explains how
neural networks can learn to recognize handwriting -->
<li><b><a href="chap1.html">第1章</a></b>では、ニューラルネットワークが手書き文字を認識するしくみを説明します。
<!--<li><b><a href="chap2.html">Read Chapter 2</a></b>, which explains
backpropagation, the most important algorithm used to learn in neural
networks.-->
<li><b><a href="chap2.html">第2章</a></b>では、ニューラルネットワークを学習させる最も重要なアルゴリズムである、逆伝播という手法を説明します。
<!--<li><b><a href="chap3.html">Read Chapter 3</a></b>, which explains
many techniques which can be used to improve the performance of
backpropagation.-->
<li><b><a href="chap3.html">第3章</a></b>では、逆伝播の性能を向上させるための様々な技法を紹介します。
<!--<li><b><a href="chap4.html">Read Chapter 4</a></b>, which explains why
neural networks can compute any function.-->
<li><b><a href="chap4.html">第4章</a></b>では、ニューラルネットワークがなぜ任意の関数を計算できるのかを証明します。
<!--<li><b><a href="about.html">Learn more about the approach taken in
this book</a></b>
-->
<li><b><a href="about.html">この本について</a></b>では、この本で採用したアプローチについて説明します。
</ul>
</p>
<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>
</div><div class="footer"> <span class="left_footer"> In academic work,
please cite this book as: Michael A. Nielsen, "Neural Networks and
Deep Learning", Determination Press, 2014
<br/>
<br/>
This work is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB"
style="color: #eee;">Creative Commons Attribution-NonCommercial 3.0
Unported License</a>. This means you're free to copy, share, and
build on this book, but not to sell it. If you're interested in
commercial use, please <a
href="mailto:[email protected]">contact me</a>.
</span>
<span class="right_footer">
Last update: Tue Sep 2 09:19:44 2014
<br/>
<br/>
<br/>
<a rel="license" href="http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB"><img alt="Creative Commons Licence" style="border-width:0" src="http://i.creativecommons.org/l/by-nc/3.0/88x31.png" /></a>
</span>
</div>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-44208967-1', 'neuralnetworksanddeeplearning.com');
ga('send', 'pageview');
</script>
</body>
</html>