-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain_rnc.py
189 lines (144 loc) · 6.82 KB
/
main_rnc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
import os
import sys
import logging
import torch
import time
from dataset import *
from utils import *
from model import Encoder
from loss import RnCLoss
print = logging.info
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
parser.add_argument('--save_freq', type=int, default=50, help='save frequency')
parser.add_argument('--save_curr_freq', type=int, default=1, help='save curr last frequency')
parser.add_argument('--batch_size', type=int, default=256, help='batch_size')
parser.add_argument('--num_workers', type=int, default=16, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=400, help='number of training epochs')
parser.add_argument('--learning_rate', type=float, default=0.5, help='learning rate')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--trial', type=str, default='0', help='id for recording multiple runs')
parser.add_argument('--data_folder', type=str, default='./data', help='path to custom dataset')
parser.add_argument('--dataset', type=str, default='AgeDB', choices=['AgeDB'], help='dataset')
parser.add_argument('--model', type=str, default='resnet18', choices=['resnet18', 'resnet50'])
parser.add_argument('--resume', type=str, default='', help='resume ckpt path')
parser.add_argument('--aug', type=str, default='crop,flip,color,grayscale', help='augmentations')
# RnCLoss Parameters
parser.add_argument('--temp', type=float, default=2, help='temperature')
parser.add_argument('--label_diff', type=str, default='l1', choices=['l1'], help='label distance function')
parser.add_argument('--feature_sim', type=str, default='l2', choices=['l2'], help='feature similarity function')
opt = parser.parse_args()
opt.model_path = './save/{}_models'.format(opt.dataset)
opt.model_name = 'RnC_{}_{}_ep_{}_lr_{}_d_{}_wd_{}_mmt_{}_bsz_{}_aug_{}_temp_{}_label_{}_feature_{}_trial_{}'. \
format(opt.dataset, opt.model, opt.epochs, opt.learning_rate, opt.lr_decay_rate, opt.weight_decay, opt.momentum,
opt.batch_size, opt.aug, opt.temp, opt.label_diff, opt.feature_sim, opt.trial)
if len(opt.resume):
opt.model_name = opt.resume.split('/')[-2]
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
else:
print('WARNING: folder exist.')
logging.root.handlers = []
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s | %(message)s",
handlers=[
logging.FileHandler(os.path.join(opt.save_folder, 'training.log')),
logging.StreamHandler()
])
print(f"Model name: {opt.model_name}")
print(f"Options: {opt}")
return opt
def set_loader(opt):
train_transform = get_transforms(split='train', aug=opt.aug)
print(f"Train Transforms: {train_transform}")
train_dataset = globals()[opt.dataset](
data_folder=opt.data_folder,
transform=TwoCropTransform(train_transform),
split='train'
)
print(f'Train set size: {train_dataset.__len__()}')
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt.batch_size, shuffle=True,
num_workers=opt.num_workers, pin_memory=True, drop_last=True)
return train_loader
def set_model(opt):
model = Encoder(name=opt.model)
criterion = RnCLoss(temperature=opt.temp, label_diff=opt.label_diff, feature_sim=opt.feature_sim)
if torch.cuda.is_available():
if torch.cuda.device_count() > 1:
model.encoder = torch.nn.DataParallel(model.encoder)
model = model.cuda()
criterion = criterion.cuda()
torch.backends.cudnn.benchmark = True
return model, criterion
def train(train_loader, model, criterion, optimizer, epoch, opt):
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
end = time.time()
for idx, data_tuple in enumerate(train_loader):
images, labels = data_tuple
data_time.update(time.time() - end)
bsz = labels.shape[0]
images = torch.cat([images[0], images[1]], dim=0)
if torch.cuda.is_available():
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
features = model(images)
f1, f2 = torch.split(features, [bsz, bsz], dim=0)
features = torch.cat([f1.unsqueeze(1), f2.unsqueeze(1)], dim=1)
loss = criterion(features, labels)
losses.update(loss.item(), bsz)
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if (idx + 1) % opt.print_freq == 0:
to_print = 'Train: [{0}][{1}/{2}]\t' \
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t' \
'loss {loss.val:.5f} ({loss.avg:.5f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses
)
print(to_print)
sys.stdout.flush()
def main():
opt = parse_option()
# build data loader
train_loader = set_loader(opt)
# build model and criterion
model, criterion = set_model(opt)
# build optimizer
optimizer = set_optimizer(opt, model)
start_epoch = 1
if len(opt.resume):
ckpt_state = torch.load(opt.resume)
model.load_state_dict(ckpt_state['model'])
optimizer.load_state_dict(ckpt_state['optimizer'])
start_epoch = ckpt_state['epoch'] + 1
print(f"<=== Epoch [{ckpt_state['epoch']}] Resumed from {opt.resume}!")
# training routine
for epoch in range(start_epoch, opt.epochs + 1):
adjust_learning_rate(opt, optimizer, epoch)
train(train_loader, model, criterion, optimizer, epoch, opt)
if epoch % opt.save_freq == 0:
save_file = os.path.join(
opt.save_folder, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
save_model(model, optimizer, opt, epoch, save_file)
if epoch % opt.save_curr_freq == 0:
save_file = os.path.join(opt.save_folder, 'curr_last.pth')
save_model(model, optimizer, opt, epoch, save_file)
# save the last model
save_file = os.path.join(opt.save_folder, 'last.pth')
save_model(model, optimizer, opt, opt.epochs, save_file)
if __name__ == '__main__':
main()