-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathchat_translate.py
232 lines (202 loc) · 9.7 KB
/
chat_translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import scipdf
import sys, os
import openai
import tenacity
import tiktoken
import re
from functools import lru_cache
class LazyloadTiktoken(object):
def __init__(self, model):
self.model = model
@staticmethod
@lru_cache(maxsize=128)
def get_encoder(model):
print('正在加载tokenizer,如果是第一次运行,可能需要一点时间下载参数')
tmp = tiktoken.encoding_for_model(model)
print('加载tokenizer完毕')
return tmp
def encode(self, *args, **kwargs):
encoder = self.get_encoder(self.model)
return encoder.encode(*args, **kwargs)
def decode(self, *args, **kwargs):
encoder = self.get_encoder(self.model)
def parse_pdf(path):
try:
pdf = scipdf.parse_pdf_to_dict(path, as_list=False)
# 下面这段内容,可以加,也可以删除
pdf['authors'] = pdf['authors'].split('; ')
pdf['section_names'] = [it['heading'] for it in pdf['sections']]
pdf['section_texts'] = [it['text'] for it in pdf['sections']]
except Exception as e:
print("parse_pdf_to_dict(path:", e)
exc_type, exc_obj, exc_tb = sys.exc_info()
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
print(exc_type, fname, exc_tb.tb_lineno)
return pdf
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(8),
reraise=True)
def chat_translate_part(text, key, title=False, domain="", tokenizer_gpt35=None, task="翻译"):
openai.api_key = key
# 这里需要做切分,如果长文本的话,需要多次翻译,或者直接换用16K的api.
# 先判断文本token长度:
token_size = len(tokenizer_gpt35.encode(text))
if token_size > 1800:
model = "gpt-3.5-turbo-16k"
else:
model = "gpt-3.5-turbo"
if title:
messages = [
{"role": "system",
"content": "You are now a professional Science and technology editor"},
{"role": "assistant",
"content": "Your task now is to translate title of the paper, the paper is about "+ domain},
{"role": "user", "content": "Input Contents:" + text +
"""
你需要把输入的标题,翻译成中文,且加上原标题。
注意,一些专业的词汇,或者缩写,还是需要保留为英文。
输出中文翻译部分的时候,只保留翻译的标题,不要有任何其他的多余内容,不要重复,不要解释。
输出原标题的时候,完整输出即可,不要多也不要少。
你的输出格式如下:
Output format is (你需要根据上面的要求,xxx是中文翻译的占位符,yyy是英文原标题的占位符,你需要将内容填充进去):
\n
# xxx
## yyy
\n
"""},
]
else:
messages = [
{"role": "system",
"content": "You are a professional academic paper translator."},
{"role": "assistant",
"content": "Your task now is to {} the Input Contents, which a section, part of a paper, the paper is about {}".format(task, domain)},
{"role": "user", "content": f"""
你的任务是口语化{task}输入的论文章节,{task}的内容要遵循下面的要求:
1. 在保证术语严谨的同时,文字表述需要更加口语化。
2. 需要地道的中文{task},逻辑清晰且连贯,少用倒装句式。
3. 对于简短的Input Contents,不要画蛇添足,增加多余的解释和扩展。
4. 对于本领域的专业术语,需要标注英文,便于读者参考。这篇论文的领域是{domain}。
5. 适当使用MarkDown语法,比如有序列表、加粗等。
你的输出内容格式需要遵循下面的要求:
1. ## 章节名称,中文{task}(Original English section name)
2. 章节内容的{task}
Output format is (你需要根据上面的要求,自动填充xxx和yyy的占位符):
\n
## xxx
yyy
\n
Input include section name and section text, Input Contents: {text}
"""},
]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0.3,
)
result = ''
for choice in response.choices:
result += choice.message.content
print("summary_result:\n", result)
print("prompt_token_used:", response.usage.prompt_tokens,
"completion_token_used:", response.usage.completion_tokens,
"total_token_used:", response.usage.total_tokens)
print("response_time:", response.response_ms / 1000.0, 's')
info = {}
info['result'] = result
info['token_used'] = response.usage.total_tokens
info['response_time'] = response.response_ms / 1000.0
return info
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(8),
reraise=True)
def chat_check_domain(text, key):
openai.api_key = key
messages = [
{"role": "system",
"content": "You are now a professional Science and technology editor"},
{"role": "assistant",
"content": "Your task is to judge the subject and domain of the paper based on the title and abstract of the paper, and your output should not exceed five words!"},
{"role": "user", "content": "Input Contents:" + text},
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
temperature=0.3,
)
result = ''
for choice in response.choices:
result += choice.message.content
print("summary_result:\n", result)
print("prompt_token_used:", response.usage.prompt_tokens,
"completion_token_used:", response.usage.completion_tokens,
"total_token_used:", response.usage.total_tokens)
print("response_time:", response.response_ms / 1000.0, 's')
info = {}
info['result'] = result
info['token_used'] = response.usage.total_tokens
info['response_time'] = response.response_ms / 1000.0
return info
def main(root_path, pdf_path, base_url, key, task="翻译"):
md_file = root_path + pdf_path.split("/")[-1].replace(".pdf", '.md')
md_str = "\n"
token_consumed = 0
paper_pdf = parse_pdf(pdf_path)
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
# 先根据标题和摘要,确定这篇文章的主题,给接下来的提示词,提供一个约束。效果提升非常明显
if "title" in paper_pdf.keys() and "abstract" in paper_pdf.keys():
text = "Title:" + paper_pdf['title'] + "Abstract:" + paper_pdf['abstract']
return_dict = chat_check_domain(text, key)
domains = return_dict['result']
token_consumed += return_dict["token_used"]
else:
domains = ""
print("这篇文章的domain是:", domains)
# input("继续?")
openai.api_base = base_url
# 先把标题翻译了
if "title" in paper_pdf.keys():
text = paper_pdf['title']
return_dict = chat_translate_part(text, key, title=True, domain=domains, tokenizer_gpt35=tokenizer_gpt35)
result = return_dict['result']
md_str += result
md_str += "\n"
md_str += "\n"
token_consumed += return_dict["token_used"]
with open(md_file, 'w', encoding="utf-8") as f:
f.write(md_str)
# 再把摘要翻译了
if "abstract" in paper_pdf.keys():
text = "Section Name:" + "Abstract" + "\n Section text:" + paper_pdf['abstract']
return_dict = chat_translate_part(text, key, domain=domains, tokenizer_gpt35=tokenizer_gpt35)
result = return_dict['result']
cur_str = "\n"
cur_str += result
cur_str += "\n"
token_consumed += return_dict["token_used"]
with open(md_file, 'a', encoding="utf-8") as f:
f.write(cur_str)
for section_index, section_name in enumerate(paper_pdf['section_names']):
print(section_index, section_name)
# 判断文本是否为空:
if len(paper_pdf['section_texts'][section_index])>0:
text = "Section Name:" + section_name + "\n Section text:" + paper_pdf['section_texts'][section_index]
return_dict = chat_translate_part(text, key, domain=domains, tokenizer_gpt35=tokenizer_gpt35, task=task)
result = return_dict['result']
cur_str = "\n"
cur_str += result
cur_str += "\n"
token_consumed += return_dict["token_used"]
# 找到其中包含##的文本,如果##的前面没有\n,且后面文本到\n的文本长度小于18个word,则将其替换为\n##,否则不替换
pattern = r'([^\\n])##([^\\n]{1,18}\W+)'
cur_str = re.sub(pattern, r'\1\n##\2', cur_str)
with open(md_file, 'a', encoding="utf-8") as f:
f.write(cur_str)
print("整篇文章消耗了{}的token!".format(token_consumed))
if __name__ == "__main__":
root_path = r'./'
pdf_path = r'./demo.pdf'
base_url = 'https://api.openai.com/v1'
key = "sk-xxx"
task = "翻译"
main(root_path, pdf_path, base_url, key, task)