forked from Nanne/pytorch-NetVlad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetvlad.py
88 lines (76 loc) · 3.48 KB
/
netvlad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.neighbors import NearestNeighbors
import numpy as np
# based on https://github.com/lyakaap/NetVLAD-pytorch/blob/master/netvlad.py
class NetVLAD(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=64, dim=128,
normalize_input=True, vladv2=False):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
alpha : float
Parameter of initialization. Larger value is harder assignment.
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
vladv2 : bool
If true, use vladv2 otherwise use vladv1
"""
super(NetVLAD, self).__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = 0
self.vladv2 = vladv2
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=vladv2)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
def init_params(self, clsts, traindescs):
#TODO replace numpy ops with pytorch ops
if self.vladv2 == False:
clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True)
dots = np.dot(clstsAssign, traindescs.T)
dots.sort(0)
dots = dots[::-1, :] # sort, descending
self.alpha = (-np.log(0.01) / np.mean(dots[0,:] - dots[1,:])).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha*clstsAssign).unsqueeze(2).unsqueeze(3))
self.conv.bias = None
else:
knn = NearestNeighbors(n_jobs=-1) #TODO faiss?
knn.fit(traindescs)
del traindescs
dsSq = np.square(knn.kneighbors(clsts, 2)[1])
del knn
self.alpha = (-np.log(0.01) / np.mean(dsSq[:,1] - dsSq[:,0])).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
del clsts, dsSq
self.conv.weight = nn.Parameter(
(2.0 * self.alpha * self.centroids).unsqueeze(-1).unsqueeze(-1)
)
self.conv.bias = nn.Parameter(
- self.alpha * self.centroids.norm(dim=1)
)
def forward(self, x):
N, C = x.shape[:2]
if self.normalize_input:
x = F.normalize(x, p=2, dim=1) # across descriptor dim
# soft-assignment
soft_assign = self.conv(x).view(N, self.num_clusters, -1)
soft_assign = F.softmax(soft_assign, dim=1)
x_flatten = x.view(N, C, -1)
# calculate residuals to each clusters
vlad = torch.zeros([N, self.num_clusters, C], dtype=x.dtype, layout=x.layout, device=x.device)
for C in range(self.num_clusters): # slower than non-looped, but lower memory usage
residual = x_flatten.unsqueeze(0).permute(1, 0, 2, 3) - \
self.centroids[C:C+1, :].expand(x_flatten.size(-1), -1, -1).permute(1, 2, 0).unsqueeze(0)
residual *= soft_assign[:,C:C+1,:].unsqueeze(2)
vlad[:,C:C+1,:] = residual.sum(dim=-1)
vlad = F.normalize(vlad, p=2, dim=2) # intra-normalization
vlad = vlad.view(x.size(0), -1) # flatten
vlad = F.normalize(vlad, p=2, dim=1) # L2 normalize
return vlad