-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdeploy_vggm_modelnet40_case2.prototxt
212 lines (212 loc) · 2.78 KB
/
deploy_vggm_modelnet40_case2.prototxt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
input: "data"
input_dim: 400
input_dim: 3
input_dim: 224
input_dim: 224
layers {
bottom: "data"
top: "conv1"
name: "conv1"
type: CONVOLUTION
convolution_param {
num_output: 96
kernel_size: 7
stride: 2
}
}
layers {
bottom: "conv1"
top: "conv1"
name: "relu1"
type: RELU
}
layers {
bottom: "conv1"
top: "norm1"
name: "norm1"
type: LRN
lrn_param {
local_size: 5
alpha: 0.0005
beta: 0.75
}
}
layers {
bottom: "norm1"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2"
name: "conv2"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 5
stride: 2
}
}
layers {
bottom: "conv2"
top: "conv2"
name: "relu2"
type: RELU
}
layers {
bottom: "conv2"
top: "norm2"
name: "norm2"
type: LRN
lrn_param {
local_size: 5
alpha: 0.0005
beta: 0.75
}
}
layers {
bottom: "norm2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
bottom: "pool2"
top: "conv3"
name: "conv3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3"
top: "conv3"
name: "relu3"
type: RELU
}
layers {
bottom: "conv3"
top: "conv4"
name: "conv4"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4"
top: "conv4"
name: "relu4"
type: RELU
}
layers {
bottom: "conv4"
top: "conv5"
name: "conv5"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5"
top: "conv5"
name: "relu5"
type: RELU
}
layers {
bottom: "conv5"
top: "pool5"
name: "pool5"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
bottom: "pool5"
top: "fc6"
name: "fc6"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: RELU
}
layers {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc6"
top: "fc7"
name: "fc7"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: RELU
}
layers {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc7"
top: "fc8_modelnet40v1"
name: "fc8_modelnet40v1"
type: INNER_PRODUCT
inner_product_param {
num_output: 820
}
}
layers {
bottom: "fc8_modelnet40v1"
top: "prob"
name: "prob"
type: MY_SOFTMAX
my_softmax_param {
stride: 41
}
}