forked from parallella/pal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp_xcorr.c
102 lines (96 loc) · 2.71 KB
/
p_xcorr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#include <pal.h>
/**
* Computes the raw full-length linear cross correlation of vectors x and y and
* stores the result in vector r. Normalization is done outside this function.
*
* NOTE: This implementation requires nx >= ny -- need to be checked by the caller !!!
*
* @param x Pointer an input vector of floats of 'nx' elements
*
* @param y Pointer an input vector of floats of 'ny' elements
*
* @param r Pointer an output vector of floats of 'ny+ny-1' elements
*
* @param nx Number of elements in vector 'x'
*
* @param ny Number of elements in vector 'y'
*
* @param p Number of processor to use (task parallelism)
*
* @param team Team to work with
*
* @return None
*
*/
void p_xcorr_f32(const float *x, const float *y, float *r, int nx, int ny,
int p, p_team_t team)
{
const float* data1_p;
const float* data2_p;
const float* start_data1_p;
const float* start_data2_p;
int i1, i2, n1, n2, i;
const float* vec1_save_p;
const float* vec2_save_p;
float tmp;
// Default assumption ny <= nx
n1 = nx;
n2 = ny;
start_data1_p = x;
start_data2_p = y;
/* This part can be uncommented if a more general function is needed, see NOTE above
float* r_orig_p;
r_orig_p = r;
// Check if we shall swith pointers
if ( nx < ny ) {
n1 = ny;
n2 = nx;
start_data1_p = y;
start_data2_p = x;
}
*/
// Divide in three fases
// First calculate last part of vector 2 first part of vector 1
vec2_save_p = &start_data2_p[n2-1];
for ( i1 = 0; i1 < n2-1; i1++ ) {
data1_p = start_data1_p;
data2_p = vec2_save_p--;
*r = (*data1_p++) * (*data2_p++);
for ( i2 = 1; i2 < i1+1; i2++ ) {
*r += (*data1_p++) * (*data2_p++);
}
r++;
}
// Now the middle part, with full correlation betweeen vector 1 and 2
vec1_save_p = start_data1_p;
for ( i1 = 0; i1 < n1-n2+1; i1++ ) {
data1_p = vec1_save_p++;
data2_p = start_data2_p;
*r = (*data1_p++) * (*data2_p++);
for ( i2 = 1; i2 < n2; i2++ ) {
*r += (*data1_p++) * (*data2_p++);
}
r++;
}
// And finaly the last part of vector 1 with the first part of vector 2
vec1_save_p = &start_data1_p[n1-n2+1];
for ( i1 = 0; i1 < n2; i1++ ) {
data1_p = vec1_save_p++;
data2_p = start_data2_p;
*r = (*data1_p++) * (*data2_p++);
for ( i2 = 1; i2 < n2-i1-1; i2++ ) {
*r += (*data1_p++) * (*data2_p++);
}
r++;
}
/* This part can be uncommented if a more general function is needed, see NOTE above
// Swap data in output vector if size of X is less then Y
if ( nx < ny ) {
for ( i = 0; i < (n1+n2-1)/2; i++ ) {
tmp = r_orig_p[i];
r_orig_p[i] = r_orig_p[n1+n2-2-i];
r_orig_p[n1+n2-2-i] = tmp;
}
}
*/
}