-
Notifications
You must be signed in to change notification settings - Fork 18
/
visualize.py
280 lines (204 loc) · 9.12 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
import torch.optim as optim
from torch.autograd import Variable
from scipy import misc
'''ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class PixelShuffleBlock(nn.Module):
def forward(self, x):
return F.pixel_shuffle(x, 2)
def SimpleCNNBlock(in_channels, out_channels,
kernel_size=3, layers=1, stride=1,
follow_with_bn=True, activation_fn=lambda: nn.ReLU(True), affine=True):
assert layers > 0 and kernel_size%2 and stride>0
current_channels = in_channels
_modules = []
for layer in range(layers):
_modules.append(nn.Conv2d(current_channels, out_channels, kernel_size, stride=stride if layer==0 else 1, padding=int(kernel_size/2), bias=not follow_with_bn))
current_channels = out_channels
if follow_with_bn:
_modules.append(nn.BatchNorm2d(current_channels, affine=affine))
if activation_fn is not None:
_modules.append(activation_fn())
return nn.Sequential(*_modules)
def SimpleUpsamplerSubpixel(in_channels, out_channels, kernel_size=3, activation_fn=lambda: torch.nn.ReLU(inplace=False), follow_with_bn=True):
_modules = [
SimpleCNNBlock(in_channels, out_channels * 4, kernel_size=kernel_size, follow_with_bn=follow_with_bn),
PixelShuffleBlock(),
activation_fn(),
]
return nn.Sequential(*_modules)
class UpSampleBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels,passthrough_channels, stride=1):
super(UpSampleBlock, self).__init__()
self.upsampler = SimpleUpsamplerSubpixel(in_channels=in_channels,out_channels=out_channels)
self.follow_up = BasicBlock(out_channels+passthrough_channels,out_channels)
def forward(self, x, passthrough):
out = self.upsampler(x)
out = torch.cat((out,passthrough), 1)
return self.follow_up(out)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
up_block = UpSampleBlock;
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.uplayer4 = UpSampleBlock(in_channels=512,out_channels=256,passthrough_channels=256)
self.uplayer3 = UpSampleBlock(in_channels=256,out_channels=128,passthrough_channels=128)
self.uplayer2 = UpSampleBlock(in_channels=128,out_channels=64,passthrough_channels=64)
self.embedding = nn.Embedding(num_classes,512)
self.linear = nn.Linear(512*block.expansion, num_classes)
self.saliency_chans = nn.Conv2d(64,2,kernel_size=1,bias=False)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
break;
return nn.Sequential(*layers)
def forward(self, x,labels):
out = F.relu(self.bn1(self.conv1(x)))
scale1 = self.layer1(out)
scale2 = self.layer2(scale1)
scale3 = self.layer3(scale2)
scale4 = self.layer4(scale3)
em = torch.squeeze(self.embedding(labels.view(-1, 1)), 1)
act = torch.sum(scale4*em.view(-1, 512, 1, 1), 1, keepdim=True)
th = torch.sigmoid(act)
scale4 = scale4*th
upsample3 = self.uplayer4(scale4,scale3)
upsample2 = self.uplayer3(upsample3,scale2)
upsample1 = self.uplayer2(upsample2,scale1)
saliency_chans = self.saliency_chans(upsample1)
out = F.avg_pool2d(scale4, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
a = torch.abs(saliency_chans[:,0,:,:])
b = torch.abs(saliency_chans[:,1,:,:])
return torch.unsqueeze(a/(a+b), dim=1), out
def ResNet18():
return ResNet(BasicBlock, [2,2,2,2])
def ResNet34():
return ResNet(BasicBlock, [3,4,6,3])
def ResNet50():
return ResNet(Bottleneck, [3,4,6,3])
def ResNet101():
return ResNet(Bottleneck, [3,4,23,3])
def ResNet152():
return ResNet(Bottleneck, [3,8,36,3])
def test():
net = ResNet18()
y = net(Variable(torch.randn(1,3,32,32)))
print(y.size())
def save_checkpoint(state, filename='sal.pth.tar'):
torch.save(state, filename)
def load_checkpoint(net,filename='small.pth.tar'):
checkpoint = torch.load(filename)
net.load_state_dict(checkpoint['state_dict'])
return net
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
import torch.optim as optim
def imshow(img):
img = img / 2 + 0.5
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
net = ResNet18()
net = net.cuda()
net = torch.load('saliency_model.tar')
for i, data in enumerate(testloader, 0):
inputs, labels = data
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
masks,_ = net(inputs,labels)
#Original Image
imshow(torchvision.utils.make_grid(inputs.cpu().data))
#Mask
imshow(torchvision.utils.make_grid(masks.cpu().data))
#Image Segmented
imshow(torchvision.utils.make_grid((inputs*masks).cpu().data))