You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In the following equation x, y, and n are positive integers.
1
x
+
1
y
=
1
n
It can be verified that when n = 1260 there are 113 distinct solutions and this is the least value of n for which the total number of distinct solutions exceeds one hundred.
What is the least value of n for which the number of distinct solutions exceeds four million?
NOTE: This problem is a much more difficult version of problem 108 and as it is well beyond the limitations of a brute force approach it requires a clever implementation.
The text was updated successfully, but these errors were encountered:
In the following equation x, y, and n are positive integers.
1
x
+
1
y
=
1
n
It can be verified that when n = 1260 there are 113 distinct solutions and this is the least value of n for which the total number of distinct solutions exceeds one hundred.
What is the least value of n for which the number of distinct solutions exceeds four million?
NOTE: This problem is a much more difficult version of problem 108 and as it is well beyond the limitations of a brute force approach it requires a clever implementation.
The text was updated successfully, but these errors were encountered: