Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

111 : Primes with runs #111

Open
karandit opened this issue Mar 9, 2014 · 0 comments
Open

111 : Primes with runs #111

karandit opened this issue Mar 9, 2014 · 0 comments

Comments

@karandit
Copy link
Owner

karandit commented Mar 9, 2014

Considering 4-digit primes containing repeated digits it is clear that they cannot all be the same: 1111 is divisible by 11, 2222 is divisible by 22, and so on. But there are nine 4-digit primes containing three ones:

1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111

We shall say that M(n, d) represents the maximum number of repeated digits for an n-digit prime where d is the repeated digit, N(n, d) represents the number of such primes, and S(n, d) represents the sum of these primes.

So M(4, 1) = 3 is the maximum number of repeated digits for a 4-digit prime where one is the repeated digit, there are N(4, 1) = 9 such primes, and the sum of these primes is S(4, 1) = 22275. It turns out that for d = 0, it is only possible to have M(4, 0) = 2 repeated digits, but there are N(4, 0) = 13 such cases.

In the same way we obtain the following results for 4-digit primes.

Digit, d | M(4, d) | N(4, d) | S(4, d)
======|=========|=======|=======
0 2 13 67061
1 3 9 22275
2 3 1 2221
3 3 12 46214
4 3 2 8888
5 3 1 5557
6 3 1 6661
7 3 9 57863
8 3 1 8887
9 3 7 48073

For d = 0 to 9, the sum of all S(4, d) is 273700.

Find the sum of all S(10, d).

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant