You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
NOTE: This is a more difficult version of problem 114.
A row measuring n units in length has red blocks with a minimum length of m units placed on it, such that any two red blocks (which are allowed to be different lengths) are separated by at least one black square.
Let the fill-count function, F(m, n), represent the number of ways that a row can be filled.
For example, F(3, 29) = 673135 and F(3, 30) = 1089155.
That is, for m = 3, it can be seen that n = 30 is the smallest value for which the fill-count function first exceeds one million.
In the same way, for m = 10, it can be verified that F(10, 56) = 880711 and F(10, 57) = 1148904, so n = 57 is the least value for which the fill-count function first exceeds one million.
For m = 50, find the least value of n for which the fill-count function first exceeds one million.
The text was updated successfully, but these errors were encountered:
NOTE: This is a more difficult version of problem 114.
A row measuring n units in length has red blocks with a minimum length of m units placed on it, such that any two red blocks (which are allowed to be different lengths) are separated by at least one black square.
Let the fill-count function, F(m, n), represent the number of ways that a row can be filled.
For example, F(3, 29) = 673135 and F(3, 30) = 1089155.
That is, for m = 3, it can be seen that n = 30 is the smallest value for which the fill-count function first exceeds one million.
In the same way, for m = 10, it can be verified that F(10, 56) = 880711 and F(10, 57) = 1148904, so n = 57 is the least value for which the fill-count function first exceeds one million.
For m = 50, find the least value of n for which the fill-count function first exceeds one million.
The text was updated successfully, but these errors were encountered: