Skip to content

After R and ggplot2 update ggsurvplot no longer works fine. #694

@pdeninis

Description

@pdeninis

Previous installation:

> sessionInfo()
R version 4.0.1 (2020-06-06)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:
[1] LC_COLLATE=Italian_Italy.1252  LC_CTYPE=Italian_Italy.1252   
[3] LC_MONETARY=Italian_Italy.1252 LC_NUMERIC=C                  
[5] LC_TIME=Italian_Italy.1252    

attached base packages:
[1] grid      splines   stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] adjustedCurves_0.11.3      Matching_4.10-2           
 [3] EValue_4.1.4               rbounds_2.2               
 [5] AICcmodavg_2.3-1           orddom_3.1                
 [7] psych_2.2.3                sandwich_3.0-1            
 [9] car_3.0-12                 lawstat_3.4               
[11] sfsmisc_1.1-13             tree_1.0-41               
[13] interactions_1.1.5         gvlma_1.0.0.3             
[15] brglm_0.7.2                profileModel_0.6.1        
[17] arm_1.12-2                 gridExtra_2.3             
[19] multcompView_0.1-8         RVAideMemoire_0.9-81-2    
[21] lmerTest_3.1-3             lme4_1.1-27               
[23] Matrix_1.3-4               fitdistrplus_1.1-8        
[25] FSA_0.9.0                  dynamichazard_1.0.1       
[27] ClinicalTrialSummary_1.1.1 rms_6.2-0                 
[29] SparseM_1.81               Hmisc_4.5-0               
[31] Formula_1.2-4              lattice_0.20-44           
[33] flexsurv_2.1               coin_1.4-2                
[35] coxphw_4.0.2               overlapping_2.1           
[37] testthat_3.1.3             effects_4.2-1             
[39] carData_3.0-5              nonnest2_0.5-5            
[41] lmtest_0.9-40              zoo_1.8-9                 
[43] ordinal_2019.12-10         survminer_0.4.9           
[45] ggpubr_0.4.0               survRM2_1.0-4             
[47] emmeans_1.6.1              multcomp_1.4-17           
[49] TH.data_1.0-10             MASS_7.3-54               
[51] survival_3.2-11            mvtnorm_1.1-2             
[53] forcats_0.5.1              stringr_1.4.0             
[55] dplyr_1.0.6                purrr_0.3.4               
[57] readr_2.1.2                tidyr_1.1.3               
[59] tibble_3.1.2               ggplot2_3.3.5             
[61] tidyverse_1.3.1            discSurv_2.0.0            
[63] treeClust_1.1-7            cluster_2.1.2             
[65] rpart_4.1-15               gam_1.20.1                
[67] foreach_1.5.2             

loaded via a namespace (and not attached):
  [1] utf8_1.2.1          tidyselect_1.1.2    htmlwidgets_1.5.4  
  [4] ranger_0.13.1       jtools_2.1.3        munsell_0.5.0      
  [7] codetools_0.2-18    withr_2.5.0         colorspace_2.0-1   
 [10] muhaz_1.2.6.4       knitr_1.33          rstudioapi_0.13    
 [13] stats4_4.0.1        ggsignif_0.6.3      labeling_0.4.2     
 [16] Rdpack_2.3          mnormt_2.0.2        KMsurv_0.1-5       
 [19] farver_2.1.0        coda_0.19-4         vctrs_0.4.1        
 [22] generics_0.1.2      metafor_3.4-0       xfun_0.23          
 [25] geepack_1.3.3       markdown_1.1        R6_2.5.1           
 [28] VGAM_1.1-6          Kendall_2.2.1       assertthat_0.2.1   
 [31] scales_1.2.0        nnet_7.3-16         gtable_0.3.0       
 [34] conquer_1.0.2       rlang_1.0.2         MatrixModels_0.5-0 
 [37] rstatix_0.7.0       broom_0.8.0         checkmate_2.0.0    
 [40] unmarked_1.1.1      abind_1.4-5         modelr_0.1.8       
 [43] backports_1.2.1     gridtext_0.1.4      tools_4.0.1        
 [46] lavaan_0.6-11       ellipsis_0.3.2      raster_3.5-15      
 [49] RColorBrewer_1.1-3  plyr_1.8.7          Rcpp_1.0.8.3       
 [52] base64enc_0.1-3     deSolve_1.32        haven_2.4.1        
 [55] fs_1.5.2            survey_4.1-1        magrittr_2.0.1     
 [58] data.table_1.14.0   reprex_2.0.1        mvnfast_0.2.7      
 [61] tmvnsim_1.0-2       matrixStats_0.59.0  hms_1.1.1          
 [64] xtable_1.8-4        jpeg_0.1-8.1        readxl_1.3.1       
 [67] compiler_4.0.1      functional_0.6      crayon_1.5.1       
 [70] minqa_1.2.4         htmltools_0.5.1.1   mgcv_1.8-40        
 [73] tzdb_0.3.0          ggtext_0.1.1        libcoin_1.0-9      
 [76] lubridate_1.8.0     DBI_1.1.2           dbplyr_2.1.1       
 [79] boot_1.3-28         brio_1.1.3          cli_3.2.0          
 [82] mitools_2.4         quadprog_1.5-8      rbibutils_2.2.8    
 [85] parallel_4.0.1      insight_0.18.0      pkgconfig_2.0.3    
 [88] km.ci_0.5-6         sp_1.4-7            numDeriv_2016.8-1.1
 [91] foreign_0.8-81      terra_1.5-21        xml2_1.3.3         
 [94] pbivnorm_0.6.0      rngtools_1.5.2      estimability_1.3   
 [97] CompQuadForm_1.4.3  rvest_1.0.2         doRNG_1.8.6.2      
[100] digest_0.6.27       MetaUtility_2.1.2   cellranger_1.1.0   
[103] survMisc_0.5.6      htmlTable_2.4.0     quantreg_5.86      
[106] modeltools_0.2-23   nloptr_1.2.2.2      lifecycle_1.0.1    
[109] nlme_3.1-152        jsonlite_1.8.0      mstate_0.3.2       
[112] fansi_0.5.0         pillar_1.7.0        httr_1.4.2         
[115] glue_1.4.2          metadat_1.2-0       png_0.1-7          
[118] iterators_1.0.14    pander_0.6.5        stringi_1.5.3      
[121] polspline_1.1.19    latticeExtra_0.6-29 mathjaxr_1.6-0     
[124] ucminf_1.1-4       


df <-
structure(list(Group = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L), levels = c("Control", "Ozoile"), class = "factor"), H.T = c(45L, 
45L, 45L, 75L, 90L, 60L, 45L, 60L, 30L, 60L, 75L, 60L, 45L, 45L, 
60L, 60L, 60L, 90L, 90L, 90L, 45L, 60L, 60L, 90L, 75L, 75L, 90L, 
90L, 75L, 60L, 60L, 90L, 60L, 90L, 45L, 45L, 90L, 60L, 60L, 90L, 
60L, 75L, 60L, 60L, 45L, 60L, 90L, 60L, 45L, 75L, 75L, 60L, 90L, 
90L, 60L, 90L, 75L, 60L, 75L, 60L, 60L, 75L, 45L, 75L, 75L, 60L, 
45L, 75L, 60L, 75L, 30L, 60L, 45L, 90L, 60L, 90L, 45L, 75L, 90L, 
60L, 30L, 60L, 75L, 75L, 90L, 75L, 60L, 90L, 60L, 90L, 60L, 60L, 
90L, 75L, 90L, 45L, 60L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L), Status = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
)), class = "data.frame", row.names = c(NA, -200L))


library(survminer)
library(survival)
f3 <- survfit(Surv(I(H.T/15),Status) ~ Group, data=df)
windows(8,8); ggsurvplot(f3, cumevents = TRUE, cumevents.col = "strata", fun = "event", title="Healing times comparison by treatment", xlab = "Fortnight", ylab = "Healed patients' percentage", surv.scale="percent", conf.int=TRUE, cumevents.title="Healed patients", legend.title="", surv.median.line = "hv", legend.labs=c("Control","Ozoile"), pval=TRUE, pval.method=TRUE) 

Image

New installation:

> sessionInfo()
R version 4.4.0 (2024-04-24 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=Italian_Italy.utf8  LC_CTYPE=Italian_Italy.utf8   
[3] LC_MONETARY=Italian_Italy.utf8 LC_NUMERIC=C                  
[5] LC_TIME=Italian_Italy.utf8    

time zone: Europe/Rome
tzcode source: internal

attached base packages:
[1] grid      splines   stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] WeightIt_1.5.1             pammtools_0.7.3           
 [3] riskRegression_2025.09.17  discSurv_2.0.0            
 [5] adjustedCurves_0.11.3      Matching_4.10-15          
 [7] EValue_4.1.4               rbounds_2.2               
 [9] AICcmodavg_2.3-4           orddom_3.1                
[11] psych_2.5.6                sandwich_3.1-1            
[13] car_3.1-3                  lawstat_3.6               
[15] sfsmisc_1.1-23             tree_1.0-45               
[17] interactions_1.2.0         gvlma_1.0.0.3             
[19] brglm_0.7.3                profileModel_0.6.1        
[21] arm_1.14-4                 gridExtra_2.3             
[23] multcompView_0.1-10        RVAideMemoire_0.9-83-12   
[25] lmerTest_3.1-3             lme4_1.1-37               
[27] Matrix_1.7-0               fitdistrplus_1.2-4        
[29] FSA_0.10.0                 lattice_0.22-6            
[31] ClinicalTrialSummary_1.1.1 rms_8.1-0                 
[33] Hmisc_5.2-4                flexsurv_2.3.2            
[35] coin_1.4-3                 coxphw_4.0.3              
[37] overlapping_2.2            testthat_3.3.0            
[39] effects_4.2-4              carData_3.0-5             
[41] nonnest2_0.5-8             lmtest_0.9-40             
[43] zoo_1.8-14                 ordinal_2023.12-4.1       
[45] survminer_0.5.1            ggpubr_0.6.2              
[47] survRM2_1.0-4              emmeans_2.0.0             
[49] multcomp_1.4-29            TH.data_1.1-5             
[51] MASS_7.3-60.2              survival_3.5-8            
[53] mvtnorm_1.3-3              lubridate_1.9.4           
[55] forcats_1.0.1              stringr_1.6.0             
[57] dplyr_1.1.4                purrr_1.2.0               
[59] readr_2.1.6                tidyr_1.3.1               
[61] tibble_3.3.0               ggplot2_4.0.1             
[63] tidyverse_2.0.0            treeClust_1.1-7.1         
[65] cluster_2.1.6              rpart_4.1.23              
[67] gam_1.22-6                 foreach_1.5.2             

loaded via a namespace (and not attached):
  [1] ggtext_0.1.2        MetaUtility_2.1.2   cmprsk_2.2-12      
  [4] matrixStats_1.5.0   RColorBrewer_1.1-3  insight_1.4.3      
  [7] numDeriv_2016.8-1.1 tools_4.4.0         doRNG_1.8.6.2      
 [10] backports_1.5.0     R6_2.6.1            metafor_4.8-0      
 [13] lazyeval_0.2.2      mgcv_1.9-1          withr_3.0.2        
 [16] quantreg_6.1        cli_3.6.5           labeling_0.4.3     
 [19] survMisc_0.5.6      S7_0.2.1            polspline_1.1.25   
 [22] pbivnorm_0.6.0      foreign_0.8-86      R.utils_2.13.0     
 [25] parallelly_1.45.1   VGAM_1.1-13         rstudioapi_0.17.1  
 [28] generics_0.1.4      shape_1.4.6.1       scam_1.2-20        
 [31] metadat_1.4-0       abind_1.4-8         R.methodsS3_1.8.2  
 [34] lifecycle_1.0.4     CompQuadForm_1.4.4  mstate_0.3.3       
 [37] mathjaxr_1.8-0      functional_0.6      lavaan_0.6-20      
 [40] crayon_1.5.3        cowplot_1.2.0       jtools_2.3.0       
 [43] pillar_1.11.1       knitr_1.50          boot_1.3-30        
 [46] estimability_1.5.1  future.apply_1.20.0 codetools_0.2-20   
 [49] glue_1.8.0          data.table_1.17.8   vctrs_0.6.5        
 [52] Rdpack_2.6.4        gtable_0.3.6        xfun_0.54          
 [55] rbibutils_2.4       prodlim_2025.04.28  libcoin_1.0-10     
 [58] survey_4.4-8        coda_0.19-4.1       reformulas_0.4.2   
 [61] Kendall_2.2.1       iterators_1.0.14    KMsurv_0.1-6       
 [64] lava_1.8.2          statmod_1.5.1       nlme_3.1-164       
 [67] pbkrtest_0.5.5      colorspace_2.1-2    DBI_1.2.3          
 [70] nnet_7.3-19         mnormt_2.1.1        tidyselect_1.2.1   
 [73] compiler_4.4.0      glmnet_4.1-10       htmlTable_2.4.3    
 [76] SparseM_1.84-2      xml2_1.5.0          unmarked_1.5.1     
 [79] checkmate_2.3.3     scales_1.4.0        pec_2025.06.24     
 [82] quadprog_1.5-8      digest_0.6.38       mvnfast_0.2.8      
 [85] minqa_1.2.8         rmarkdown_2.30      htmltools_0.5.8.1  
 [88] pkgconfig_2.0.3     base64enc_0.1-3     fastmap_1.2.0      
 [91] rlang_1.1.6         htmlwidgets_1.6.4   farver_2.1.2       
 [94] broom.mixed_0.2.9.6 R.oo_1.27.1         magrittr_2.0.4     
 [97] modeltools_0.2-24   Formula_1.2-5       Rcpp_1.1.0         
[100] geepack_1.3.13      ucminf_1.2.2        furrr_0.3.1        
[103] chk_0.10.0          stringi_1.8.7       brio_1.1.5         
[106] parallel_4.4.0      listenv_0.10.0      mets_1.3.8         
[109] gridtext_0.1.5      pander_0.6.6        hms_1.1.4          
[112] timereg_2.0.7       ranger_0.17.0       ggsignif_0.6.4     
[115] rngtools_1.5.2      stats4_4.4.0        evaluate_1.0.5     
[118] mitools_2.4         deSolve_1.40        nloptr_2.2.1       
[121] tzdb_0.5.0          MatrixModels_0.5-4  muhaz_1.2.6.4      
[124] future_1.68.0       km.ci_0.5-6         broom_1.0.10       
[127] xtable_1.8-4        rstatix_0.7.3       timechange_0.3.0   
[130] globals_0.18.0 

df <-
structure(list(Group = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L), levels = c("Control", "Ozoile"), class = "factor"), H.T = c(45L, 
45L, 45L, 75L, 90L, 60L, 45L, 60L, 30L, 60L, 75L, 60L, 45L, 45L, 
60L, 60L, 60L, 90L, 90L, 90L, 45L, 60L, 60L, 90L, 75L, 75L, 90L, 
90L, 75L, 60L, 60L, 90L, 60L, 90L, 45L, 45L, 90L, 60L, 60L, 90L, 
60L, 75L, 60L, 60L, 45L, 60L, 90L, 60L, 45L, 75L, 75L, 60L, 90L, 
90L, 60L, 90L, 75L, 60L, 75L, 60L, 60L, 75L, 45L, 75L, 75L, 60L, 
45L, 75L, 60L, 75L, 30L, 60L, 45L, 90L, 60L, 90L, 45L, 75L, 90L, 
60L, 30L, 60L, 75L, 75L, 90L, 75L, 60L, 90L, 60L, 90L, 60L, 60L, 
90L, 75L, 90L, 45L, 60L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 90L, 
90L, 90L, 90L, 90L), Status = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
)), class = "data.frame", row.names = c(NA, -200L))


library(survminer)
library(survival)
f3 <- survfit(Surv(I(H.T/15),Status) ~ Group, data=df)
windows(8,8); ggsurvplot(f3, cumevents = TRUE, cumevents.col = "strata", fun = "event", title="Healing times comparison by treatment", xlab = "Fortnight", ylab = "Healed patients' percentage", surv.scale="percent", conf.int=TRUE, cumevents.title="Healed patients", legend.title="", surv.median.line = "hv", legend.labs=c("Control","Ozoile"), pval=TRUE, pval.method=TRUE) 

Error:
! Problem while converting geom to grob.
ℹ Error occurred in the 3rd layer.
Caused by error in `draw_group()`:
! Unable to check the capabilities of the windows device.
Run `rlang::last_trace()` to see where the error occurred.
Messaggio di avvertimento:
Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
ℹ The deprecated feature was likely used in the ggpubr package.
  Please report the issue at <https://github.com/kassambara/ggpubr/issues>.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated. 

It seems the issue is due to ggpubr.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions