-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
866 lines (576 loc) · 20.7 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
import csv, os, re
import bs4
from time import sleep, time
import pandas as pd
from datetime import datetime
import json, requests
from xml.etree import ElementTree
import geopandas as gpd
from constants import *
from shapely import box
"""
READ/ DUMP STUFF
"""
def read_json(inputpath):
with open(inputpath) as reader:
data = reader.read()
return json.loads(data)
def dump_json(inputdict, outputpath, indent=4):
with open(outputpath, "w+", encoding="utf8") as json_handle:
json.dump(inputdict, json_handle, indent=indent, ensure_ascii=False)
def file_as_string(inputpath: str):
if os.path.exists(inputpath):
with open(inputpath, encoding="utf8") as reader:
return reader.read()
else:
raise (FileNotFoundError)
def str_to_file(inputstr: str, outputpath: str, check_path=False):
if check_path:
if not os.path.exists(outputpath):
raise (FileNotFoundError)
with open(outputpath, "w+", encoding="utf8") as writer:
writer.write(inputstr)
sleep(0.1)
class fileAsStrHandler:
def __init__(self, inputpath: str, start_over=False):
self.path = inputpath
if start_over:
self.content = ""
else:
self.content = file_as_string(self.path)
def simple_replace(self, original_part, new_part=""):
"""default is empty for just remove the selected content"""
self.content = self.content.replace(original_part, new_part)
def rewrite(self):
str_to_file(self.content, self.path)
def write_to_another_path(self, outputpath):
str_to_file(self.content, outputpath)
"""
TIME STUFF
"""
def formatted_datetime_now():
now = datetime.now()
return now.strftime("%d/%m/%Y %H:%M:%S")
def record_datetime(key, json_path="data/last_updated.json"):
datadict = read_json(json_path)
datadict[key] = formatted_datetime_now()
dump_json(datadict, json_path)
sleep(0.1)
def record_to_json(key, obj, json_path):
datadict = read_json(json_path)
datadict[key] = obj
dump_json(datadict, json_path)
"""
HTML STUFF
"""
FONT_STYLE = f"""
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Poppins:wght@500&display=swap" rel="stylesheet">
<style>
{file_as_string('oswm_codebase/assets/styles/font_styles.css')}
</style>
"""
TABLES_STYLE = f"""
<style>
{file_as_string('oswm_codebase/assets/styles/table_styles.css')}
</style>
"""
def gen_updating_infotable_page(
outpath="data/data_updating.html", json_path="data/last_updated.json"
):
tablepart = ""
records_dict = read_json(json_path)
for key in records_dict:
tablepart += f"""
<tr><th><b>{key}</b></th><th>{records_dict[key]}</th></tr>
"""
page_as_txt = f"""
<!DOCTYPE html>
<html lang="en">
<head>
{FONT_STYLE}
<title>OSWM Updating Info</title>
{TABLES_STYLE}
</head>
<body>
<h1><a href="https://kauevestena.github.io/opensidewalkmap_beta">OSWM</a> Updating Info</h1>
<p> About: OSWM is currently hosted at GitHub Pages, which means that it relies on commits to stay updated!!<br>
if the data is too outdated you may <a href="https://github.com/kauevestena/opensidewalkmap_beta/issues">post an issue</a> or contact me!!</p>
<table>
{tablepart}
</table>
<h1>Download Data:</h1>
<table>
<tr>
<th>Sidewalks</th>
<th><a href="{node_homepage_url}data/sidewalks_raw{data_format}">Raw</a></th>
<th><a href="{node_homepage_url}data/sidewalks{data_format}">Filtered</a></th>
<th><a href="{node_homepage_url}data/sidewalks_versioning.json">Versioning</a></th>
</tr>
<tr>
<th>Crossings</th>
<th><a href="{node_homepage_url}data/crossings_raw{data_format}">Raw</a></th>
<th><a href="{node_homepage_url}data/crossings{data_format}">Filtered</a></th>
<th><a href="{node_homepage_url}data/crossings_versioning.json">Versioning</a></th>
</tr>
<tr>
<th>Kerbs</th>
<th><a href="{node_homepage_url}data/kerbs_raw{data_format}">Raw</a></th>
<th><a href="{node_homepage_url}data/kerbs{data_format}">Filtered</a></th>
<th><a href="{node_homepage_url}data/kerbs_versioning.json">Versioning</a></th>
</tr>
</table>
</body>
</html>
"""
# with open(outpath,'w+') as writer:
# writer.write(page_as_txt)
str_to_file(page_as_txt, outpath)
def gen_quality_report_page_and_files(
outpath,
tabledata,
feat_type,
category,
quality_category,
text,
occ_type,
csvpath,
count_page=False,
):
pagename_base = f"{quality_category}_{category}"
csv_url = f"""<h2>
<a href="{node_homepage_url}quality_check/tables/{pagename_base}.csv"> You can also download the raw .csv table </a>
</h2>"""
tablepart = f"""<tr>
<th><b>OSM ID (link)</b></th>
<th><b>key</b></th>
<th><b>value</b></th>
<th><b>commentary</b></th>
</tr>"""
if count_page:
tablepart = f"""<tr>
<th><b>OSM ID (link)</b></th>
<th><b>count</b></th>"""
csv_url = ""
valid_featcount = 0
with open(csvpath, "w+", encoding="utf-8") as file:
writer = csv.writer(file, delimiter=",", quotechar='"')
writer.writerow(["osm_id", "key", "value", "commentary"])
for line in tabledata:
try:
line_as_str = ""
if line:
if len(line) > 2:
if not pd.isna(line[2]):
writer.writerow(line)
line[0] = return_weblink_V2(str(line[0]), feat_type)
line_as_str += "<tr>"
for element in line:
line_as_str += f"<td>{str(element)}</td>"
line_as_str += "</tr>\n"
tablepart += line_as_str
valid_featcount += 1
except:
if line:
print("skipped", line)
with open(outpath, "w+", encoding="utf-8") as writer:
page = f"""
<!DOCTYPE html>
<html lang="en">
<head>
{FONT_STYLE}
<title>OSWM DQT {category[0]} {quality_category}</title>
{TABLES_STYLE}
</head>
<body>
<h1><a href="{node_homepage_url}">OSWM</a> Data Quality Tool: {category} {quality_category}</h1>
<h2>About: {text}</h2>
<h2>Type: {occ_type}</h2>
{csv_url}
<table>
{tablepart}
</table>
</table>
</body>
</html>
"""
writer.write(page)
return valid_featcount
def find_map_ref(input_htmlpath):
with open(input_htmlpath) as inf:
txt = inf.read()
soup = bs4.BeautifulSoup(txt, features="html5lib")
refs = soup.find_all(attrs={"class": "folium-map"})
for found_ref in refs:
return found_ref["id"]
def find_html_name(
input_htmlpath, specific_ref, tag_ref="img", specific_tag="src", identifier="id"
):
with open(input_htmlpath) as inf:
txt = inf.read()
soup = bs4.BeautifulSoup(txt, features="html5lib")
refs = soup.find_all(tag_ref)
for found_ref in refs:
# if specific_tag in found_ref:
if found_ref[specific_tag] == specific_ref:
return found_ref[identifier]
def style_changer(
in_out_htmlpath,
element_key,
key="style",
original="bottom",
new="top",
append_t=None,
):
with open(in_out_htmlpath) as inf:
txt = inf.read()
soup = bs4.BeautifulSoup(txt, features="html5lib")
style_refs = soup.find_all(key)
for style_ref in style_refs:
as_txt = str(style_ref)
if element_key in as_txt:
if new:
new_text = as_txt.replace(original, new)
else:
new_text = as_txt
if append_t:
new_text += append_t
break
with open(in_out_htmlpath, "w+", encoding="utf-8") as writer:
writer.write(str(soup).replace(as_txt, new_text))
sleep(0.2)
def add_to_page_after_first_tag(
html_filepath, element_string, tag_or_txt="<head>", count=1
):
"""
Quick and dirty way to insert some stuff directly on the webpage
Originally intended only for <head>
beware of tags that repeat! the "count" argument is very important!
"""
with open(html_filepath) as reader:
pag_txt = reader.read()
replace_text = f"{tag_or_txt} \n{element_string}\n"
with open(html_filepath, "w+") as writer:
writer.write(pag_txt.replace(tag_or_txt, replace_text, count))
sleep(0.1)
def replace_at_html(html_filepath, original_text, new_text, count=1):
"""
Quick and dirty way to replace some stuff directly on the webpage
Originally intended only for <head>
beware of tags that repeat! the "count" argument is very important!
"""
if os.path.exists(html_filepath):
with open(html_filepath) as reader:
pag_txt = reader.read()
with open(html_filepath, "w+") as writer:
writer.write(pag_txt.replace(original_text, new_text, count))
else:
raise ("Error: file not found!!")
sleep(0.1)
# def file_to_str(filepath):
# if os.path.exists(filepath):
# with open(filepath) as reader:
# pag_txt = reader.read()
# return pag_txt
def find_between_strings(
string,
start,
end,
return_unique=True,
exclusions: list = None,
include_linebreaks=False,
):
pattern = f"{start}(.*){end}"
# print(pattern)
if include_linebreaks:
matches = re.findall(pattern, string, re.DOTALL)
else:
matches = re.findall(pattern, string)
if return_unique:
matches = list(set(matches))
if exclusions:
matches = [match for match in matches if match not in exclusions]
return matches
# (geo)Pandas stuff:
def get_score_df(
inputdict,
category="sidewalks",
osm_key="surface",
input_field="score_default",
output_field_base="score",
):
output_field_name = f"{category}_{osm_key}_{output_field_base}"
dict = {osm_key: [], output_field_name: []}
for val_key in inputdict[category][osm_key]:
dict[osm_key].append(val_key)
dict[output_field_name].append(
inputdict[category][osm_key][val_key][input_field]
)
return pd.DataFrame(dict), output_field_name
def get_attr_dict(inputdict, category="sidewalks", osm_tag="surface", attr="color"):
color_dict = {}
for tag_value in inputdict[category][osm_tag]:
color_dict[tag_value] = inputdict[category][osm_tag][tag_value][attr]
return color_dict
def return_weblink_way(string_id):
return f"<a href=https://www.openstreetmap.org/way/{string_id}>{string_id}</a>"
def return_weblink_node(string_id):
return f"<a href=https://www.openstreetmap.org/node/{string_id}>{string_id}</a>"
def return_weblink_V2(string_id, featuretype):
return f"<a href=https://www.openstreetmap.org/{featuretype}/{string_id}>{string_id}</a>"
def return_weblink_V3(type_id_string):
featuretype, string_id = type_id_string.split("_")
return f"<a href=https://www.openstreetmap.org/{featuretype}/{string_id}>{string_id}</a>"
"""
HISTORY STUFF
"""
def get_feature_history_url(featureid, type="way"):
return f"https://www.openstreetmap.org/api/0.6/{type}/{featureid}/history"
def parse_datetime_str(inputstr, format="ymdhms"):
format_dict = {
"ymdhms": "%Y-%m-%dT%H:%M:%S",
}
return datetime.strptime(inputstr, format_dict[format])
def print_relevant_columnamesV2(
input_df, not_include=("score", "geometry", "type", "id"), outfilepath=None
):
as_list = [
column
for column in input_df.columns
if not any(word in column for word in not_include)
]
# print(*as_list)
if outfilepath:
with open(outfilepath, "w+") as writer:
writer.write(",".join(as_list))
return as_list
def check_if_wikipage_exists(
name, category="Key:", wiki_page="https://wiki.openstreetmap.org/wiki/"
):
url = f"{wiki_page}{category}{name}"
try:
response = requests.head(url)
return response.status_code == 200
except requests.RequestException:
return False
"""
geopandas
"""
def gdf_to_js_file(input_gdf, output_path, output_varname):
"""
this function converts a geopandas dataframe to a javascript file, was the only thing that worked for vectorGrid module
returns the importing to be included in the html file
"""
input_gdf.to_file(output_path)
as_str = f"{output_varname} = " + file_as_string(output_path)
str_to_file(as_str, output_path)
return f'<script type="text/javascript" src="{output_path}"></script>'
def create_length_field(input_gdf, fieldname="length(km)", in_km=True):
factor = 1
if in_km:
factor = 1000
utm_crs = input_gdf.estimate_utm_crs()
input_gdf[fieldname] = input_gdf.to_crs(utm_crs).length / factor
def create_weblink_field(
input_gdf, featuretype="LineString", inputfield="id", fieldname="weblink"
):
if featuretype == "LineString":
input_gdf[fieldname] = (
input_gdf[inputfield].astype("string").apply(return_weblink_way)
)
if featuretype == "Point":
input_gdf[fieldname] = (
input_gdf[inputfield].astype("string").apply(return_weblink_node)
)
def create_folder_if_not_exists(folderpath):
if not os.path.exists(folderpath):
os.makedirs(folderpath)
def create_folderlist(folderlist):
for folder in folderlist:
create_folder_if_not_exists(folder)
def remove_if_exists(pathfile):
if os.path.exists(pathfile):
os.remove(pathfile)
def listdir_fullpath(path):
return [os.path.join(path, file) for file in os.listdir(path)]
def get_territory_polygon(place_name, outpath=None, outpath_metadata=None):
"""
This function takes a place name as input and retrieves the corresponding territory polygon using the Nominatim API. It can also optionally save the polygon as a GeoJSON file.
Parameters:
place_name (str): The name of the place for which the territory polygon is to be retrieved.
outpath (str, optional): The path where the GeoJSON file should be saved. If not provided, the polygon will not be saved.
Returns:
dict: The territory polygon as a GeoJSON object.
"""
# Make a request to Nominatim API with the place name
url = "https://nominatim.openstreetmap.org/search"
params = {"q": place_name, "format": "json", "polygon_geojson": 1}
response = requests.get(url, params=params)
# Parse the response as a JSON object
data = response.json()
# sort data by "importance", that is a key in each dictionary of the list:
data.sort(key=lambda x: x["importance"], reverse=True)
# Get the polygon of the territory as a GeoJSON object
polygon = data[0]["geojson"]
if outpath:
dump_json(polygon, outpath)
if outpath_metadata:
if "geojson" in data[0]:
del data[0]["geojson"]
dump_json(data[0], outpath_metadata)
# Return the polygon
return polygon
def geodataframe_from_a_geometry(geometry):
return gpd.GeoDataFrame(geometry=[geometry])
def bbox_geodataframe(bbox, resort=True):
if resort:
bbox = resort_bbox(bbox)
return gpd.GeoDataFrame(geometry=[box(*bbox)])
def resort_bbox(bbox):
return [bbox[1], bbox[0], bbox[3], bbox[2]]
def merge_list_of_dictionaries(list_of_dicts):
merged_dict = {}
for dictionary in list_of_dicts:
for key, value in dictionary.items():
if key in merged_dict:
if not isinstance(merged_dict[key], list):
merged_dict[key] = [merged_dict[key]]
if isinstance(value, list):
merged_dict[key].extend(value)
else:
merged_dict[key].append(value)
else:
merged_dict[key] = (
value if not isinstance(value, list) else value.copy()
)
return merged_dict
def join_to_node_homepage(input_list_or_str):
if isinstance(input_list_or_str, list):
return os.path.join(node_homepage_url, *input_list_or_str)
else:
return os.path.join(node_homepage_url, input_list_or_str)
def save_geoparquet(input_gdf, outpath, rem_empty_columns=True, replace_invalid=None):
"""
Saves a GeoDataFrame to a Parquet file.
If the GeoDataFrame is empty, creates an empty Parquet file.
Workaround for: https://github.com/geopandas/geopandas/issues/3137
"""
if input_gdf.empty:
gpd.GeoDataFrame(columns=["geometry"]).to_parquet(outpath)
else:
# do all default operations for data exporting
if rem_empty_columns:
input_gdf = input_gdf.dropna(axis="columns", how="all")
if replace_invalid:
input_gdf = input_gdf.fillna(replace_invalid)
input_gdf.to_parquet(outpath)
def row_query(df, querydict, mode="any", reverse=False):
"""
Apply a query to each row in a DataFrame and return a boolean result.
Args:
df (DataFrame): The DataFrame/GeoDataFrame to be queried.
querydict (dict): A dictionary containing the values to query for each column.
selector (callable): The function to apply to the boolean result for each row. Defaults to any().
Returns:
Series: A boolean result for each row of the DataFrame.
Examples:
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
>>> querydict = {'A': 2, 'B': 6}
>>> row_query(df, querydict)
0 False
1 True
2 False
dtype: bool
"""
if mode == "any":
selection = df.isin(querydict).any(axis=1)
elif mode == "all":
selection = df.isin(querydict).all(axis=1)
if reverse:
return ~selection
else:
return selection
def get_gdfs_dict(raw_data=False, include_all_data_dummy=False):
# used dict: paths_dict
category_group = "data_raw" if raw_data else "data"
ret_dict = {
category: gpd.read_parquet(paths_dict[category_group][category])
for category in paths_dict[category_group]
}
if include_all_data_dummy:
ret_dict["all_data"] = gpd.GeoDataFrame()
return ret_dict
def get_gdfs_dict_v2():
"""
shall include also the specialized categories
"""
return {
category: gpd.read_parquet(paths_dict["map_layers"][category])
for category in paths_dict["map_layers"]
}
def remove_empty_columns(gdf, report=False):
if report:
prev = len(gdf.columns)
gdf.dropna(axis="columns", how="all", inplace=True)
if report:
print(f" removed {prev-len(gdf.columns)} empty columns")
def get_boundaries_bbox():
return list(gpd.read_file(boundaries_geojson_path).total_bounds)
def rename_dict_key(
dictionary, old_key, new_key, ignore_missing=True, ignore_existing=True
):
if old_key in dictionary and not ignore_missing:
raise KeyError(f"Key {old_key} not found in dictionary")
if new_key in dictionary and not ignore_existing:
raise KeyError(f"Key {new_key} already exists in dictionary")
if old_key in dictionary:
dictionary[new_key] = dictionary.pop(old_key)
def create_rev_date(row):
try:
return datetime(
year=int(row["rev_year"]),
month=int(row["rev_month"]),
day=int(row["rev_day"]),
)
except ValueError:
# Handle invalid dates, you can return None or a specific default date
return datetime(
default_missing_year, default_missing_month, default_missing_day
)
def create_date_age(row):
try:
rev = datetime(
year=int(row["rev_year"]),
month=int(row["rev_month"]),
day=int(row["rev_day"]),
)
except ValueError:
# Handle invalid dates, you can return None or a specific default date
return -1
return (datetime.today() - rev).days / 365.25
def get_spaces(number, max_digits=2):
total_length = max_digits + 1 # +1 for consistent spacing
num_digits = len(str(number))
num_spaces = total_length - num_digits
return " " * num_spaces
def get_formatted_interval_string(n1, n2, max_digits=2):
spaces1 = get_spaces(n1, max_digits)
spaces2 = get_spaces(n2, max_digits)
# # a small correction in case of spaces1 and spaces2 are not equal
# # not sure if works for max_digits>2
# if len(spaces1) != len(spaces2):
# spaces2 += " "
if spaces1 == " ":
return f" {n1}{spaces1}-{spaces2}{n2}"
else:
return f"{n1}{spaces1}-{spaces2}{n2}"
basic_html = """
<!DOCTYPE html>
<html>
<head>
</head>
<body>
</body>
</html>
"""