-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgenerate.py
454 lines (397 loc) · 17.1 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#!/usr/bin/python3
import os
import math
import random
import pandas as pd
import itertools as itools
import matplotlib.pyplot as plt
from datetime import datetime
import requests
import numpy as np
from dotenv import load_dotenv
from pymongo import MongoClient
from warnings import simplefilter
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
class ColorGenerator:
def __init__(self):
self.__phi = (1 + math.sqrt(5)) / 2
self.__x = random.random()
def __hsl2hex(self, h, s, l):
t = s * min(l, 1-l)
k1 = (h/30) % 12
k2 = (8 + h/30) % 12
k3 = (4 + h/30) % 12
r = l - t * max(-1, min(1, k1-3, 9-k1))
g = l - t * max(-1, min(1, k2-3, 9-k2))
b = l - t * max(-1, min(1, k3-3, 9-k3))
red = math.floor(r*256)
green = math.floor(g*256)
blue = math.floor(b*256)
return f"#{red:02X}{green:02X}{blue:02X}"
def next(self):
self.__x = (self.__x + self.__phi) % 1
h = self.__x * 360
s = (60 + 40 * random.random()) / 100
l = (50 + s*0.2 * (random.random()*2-1)) / 100
return self.__hsl2hex(h, s, l)
load_dotenv()
# ignore sklearn warnings
simplefilter(action='ignore', category=FutureWarning)
# load json data
request_pokemons = requests.get('https://pokemon-auto-chess.com/pokemons')
LIST_POKEMON = [p for p in request_pokemons.json().values()]
types_pokemons = requests.get('https://pokemon-auto-chess.com/types')
TYPE_POKEMON = types_pokemons.json()
trigger = requests.get('https://pokemon-auto-chess.com/types-trigger')
TYPE_TRIGGER = trigger.json()
items = requests.get('https://pokemon-auto-chess.com/items')
ITEM = items.json()
# get list of type for each pokemon
POKEMON_TYPE = {}
for pkm in LIST_POKEMON:
type_list = []
for t in TYPE_POKEMON:
type_name = t.lower()
type_pokemons = TYPE_POKEMON[t]
if (pkm in type_pokemons):
type_list.append(type_name)
POKEMON_TYPE[pkm] = type_list
LIST_TYPE = [k.lower() for k in TYPE_POKEMON.keys()]
def load_data_mongodb(time_limit):
uri = os.environ.get("MONGO_URI")
client = MongoClient(uri)
db = client.test
collection = db['detailledstatisticv2']
cursor = collection.find({"time": {"$gt": time_limit}})
result = list(cursor)
client.close()
return result
def create_item_data(json_data):
item_stats = {}
for item in ITEM:
item_stats[item] = {"pokemons": {},
"rank": 0, "count": 1, "name": item}
for match in json_data:
nbPlayers = match["nbplayers"] if "nbplayers" in match else 8
for pokemon in match["pokemons"]:
for item in pokemon["items"]:
item_stats[item]["count"] += 1
item_stats[item]["rank"] += match["rank"] * 8 / nbPlayers
name = pokemon["name"]
if name == "CHERRUBI":
name = "CHERUBI"
if (name in item_stats[item]["pokemons"]):
item_stats[item]["pokemons"][name] += 1
else:
item_stats[item]["pokemons"][name] = 1
for item in item_stats:
item_stats[item]["rank"] = round(
item_stats[item]["rank"] / item_stats[item]["count"], 2)
item_stats[item]["pokemons"] = dict(
sorted(item_stats[item]["pokemons"].items(), key=lambda x: x[1], reverse=True))
item_stats[item]["pokemons"] = list(item_stats[item]["pokemons"])[:3]
return item_stats.values()
def create_pokemon_data(json_data):
pokemon_stats = {}
for pokemon in LIST_POKEMON:
pokemon_stats[pokemon] = {"items": {},
"rank": 0, "count": 0, "name": pokemon, "item_count": 0}
for match in json_data:
nbPlayers = match["nbplayers"] if "nbplayers" in match else 8
for pokemon in match["pokemons"]:
name = pokemon["name"]
if name == "CHERRUBI":
name = "CHERUBI"
pokemon_stats[name]["rank"] += match["rank"] * 8 / nbPlayers
pokemon_stats[name]["item_count"] += len(pokemon["items"])
pokemon_stats[name]["count"] += 1
for item in pokemon["items"]:
if (item in pokemon_stats[name]["items"]):
pokemon_stats[name]["items"][item] += 1
else:
pokemon_stats[name]["items"][item] = 1
for pokemon in pokemon_stats:
if (pokemon_stats[pokemon]["count"] == 0):
pokemon_stats[pokemon]["rank"] = 9
else:
pokemon_stats[pokemon]["rank"] = round(
pokemon_stats[pokemon]["rank"] / pokemon_stats[pokemon]["count"], 2)
pokemon_stats[pokemon]["item_count"] = round(
pokemon_stats[pokemon]["item_count"] / pokemon_stats[pokemon]["count"], 2)
pokemon_stats[pokemon]["items"] = dict(sorted(
pokemon_stats[pokemon]["items"].items(), key=lambda x: x[1], reverse=True))
pokemon_stats[pokemon]["items"] = list(
pokemon_stats[pokemon]["items"])[:3]
return pokemon_stats.values()
def create_pokemon_data_elo_threshold(json_data):
elo_threshold_stats = {
"LEVEL_BALL": {
"tier": "LEVEL_BALL",
"pokemons": {}
},
"NET_BALL": {
"tier": "NET_BALL",
"pokemons": {}
},
"SAFARI_BALL": {
"tier": "SAFARI_BALL",
"pokemons": {}
},
"LOVE_BALL": {
"tier": "LOVE_BALL",
"pokemons": {}
},
"PREMIER_BALL": {
"tier": "PREMIER_BALL",
"pokemons": {}
},
"QUICK_BALL": {
"tier": "QUICK_BALL",
"pokemons": {}
},
"POKE_BALL": {
"tier": "POKE_BALL",
"pokemons": {}
},
"SUPER_BALL": {
"tier": "SUPER_BALL",
"pokemons": {}
},
"ULTRA_BALL": {
"tier": "ULTRA_BALL",
"pokemons": {}
},
"MASTER_BALL": {
"tier": "MASTER_BALL",
"pokemons": {}
},
"BEAST_BALL": {
"tier": "BEAST_BALL",
"pokemons": {}
}
}
for threshold in ["LEVEL_BALL", "NET_BALL", "SAFARI_BALL", "LOVE_BALL", "PREMIER_BALL", "QUICK_BALL", "POKE_BALL", "SUPER_BALL", "ULTRA_BALL", "MASTER_BALL", "BEAST_BALL"]:
elo_threshold = 1700 if threshold == "BEAST_BALL" else 1500 if threshold == "MASTER_BALL" else 1400 if threshold == "ULTRA_BALL" else 1350 if threshold == "SUPER_BALL" else 1300 if threshold == "POKE_BALL" else 1250 if threshold == "QUICK_BALL" else 1200 if threshold == "PREMIER_BALL" else 1150 if threshold == "LOVE_BALL" else 1100 if threshold == "SAFARI_BALL" else 1050 if threshold == "NET_BALL" else 0
pokemon_stats = {}
for pokemon in LIST_POKEMON:
pokemon_stats[pokemon] = {"items": {},
"rank": 0, "count": 0, "name": pokemon, "item_count": 0}
for match in json_data:
nbPlayers = match["nbplayers"] if "nbplayers" in match else 8
if match["elo"] >= elo_threshold:
for pokemon in match["pokemons"]:
name = pokemon["name"]
if name == "CHERRUBI":
name = "CHERUBI"
pokemon_stats[name]["rank"] += match["rank"] * 8 / nbPlayers
pokemon_stats[name]["item_count"] += len(pokemon["items"])
pokemon_stats[name]["count"] += 1
for item in pokemon["items"]:
if (item in pokemon_stats[name]["items"]):
pokemon_stats[name]["items"][item] += 1
else:
pokemon_stats[name]["items"][item] = 1
for pokemon in pokemon_stats:
if (pokemon_stats[pokemon]["count"] == 0):
pokemon_stats[pokemon]["rank"] = 9
else:
pokemon_stats[pokemon]["rank"] = round(
pokemon_stats[pokemon]["rank"] / pokemon_stats[pokemon]["count"], 2)
pokemon_stats[pokemon]["item_count"] = round(
pokemon_stats[pokemon]["item_count"] / pokemon_stats[pokemon]["count"], 2)
pokemon_stats[pokemon]["items"] = dict(sorted(
pokemon_stats[pokemon]["items"].items(), key=lambda x: x[1], reverse=True))
pokemon_stats[pokemon]["items"] = list(
pokemon_stats[pokemon]["items"])[:3]
elo_threshold_stats[threshold]["pokemons"] = pokemon_stats
return elo_threshold_stats.values()
def create_dataframe(json_data):
list_match = []
for i in range(len(json_data)):
data = json_data[i]
match = {}
match["rank"] = data["rank"]
match["nbplayers"] = data["nbplayers"] if "nbplayers" in data else 8 # nbplayers has been added later so need fallback value
# for each pkm in the team
pokemons = data["pokemons"]
for j in range(len(pokemons)):
pkm_name = pokemons[j]["name"]
# increase number of pkm
if (pkm_name in match):
match[pkm_name] += 1
else:
match[pkm_name] = 1
# increase number of pkm types
pkm_types = POKEMON_TYPE[pkm_name]
for type_name in pkm_types:
if (type_name in match):
match[type_name] += 1
else:
match[type_name] = 1
list_match.append(match)
dataframe = pd.DataFrame(list_match)
dataframe.fillna(0, inplace=True)
return dataframe
def apply_tsne(df, perplexity, n_iter=4000, plot=False):
# apply t-SNE
tsne = TSNE(n_components=2, perplexity=perplexity, n_iter=n_iter,
method="barnes_hut", init="pca", learning_rate="auto")
df_result = pd.DataFrame(tsne.fit_transform(df), columns=["x", "y"])
if (plot):
# plot scatter point
plt.scatter(df_result["x"], df_result["y"], color="black", alpha=0.4)
plt.show()
return df_result
def apply_clustering(df, epsilon, min_samples, plot=False):
# apply DBSCAN on dataframe copy
df_result = df.copy()
cluster = DBSCAN(eps=epsilon, min_samples=min_samples).fit(df_result)
cluster_id = [str(l) for l in cluster.labels_]
df_result.insert(0, "cluster_id", cluster_id)
if (plot):
# plot scatter all points
plt.scatter(df_result["x"], df_result["y"], color="black", alpha=.1)
colors = ColorGenerator()
list_cluster_id = set(list_cluster_id)
if ('-1' in list_cluster_id):
list_cluster_id.remove('-1')
for cluster_id in list_cluster_id:
df_partial = df_result[df_result["cluster_id"] == cluster_id]
# plot scatter points of cluster
plt.scatter(df_partial["x"], df_partial["y"],
alpha=.33, c=colors.next())
plt.show()
return df_result
def get_meta_report(df):
n_row_total = df.shape[0]
list_cluster_id = df["cluster_id"].unique().tolist()
if '-1' in list_cluster_id:
list_cluster_id.remove('-1')
list_meta_report = []
for cluster_id in list_cluster_id:
df_sub_cluster = df[df["cluster_id"] == cluster_id]
meta_report = {}
meta_report["cluster_id"] = cluster_id
n_row = df_sub_cluster.shape[0]
size_ratio = 100 * n_row / n_row_total
meta_report["count"] = n_row
meta_report["ratio"] = round(size_ratio, 5)
n_rank1 = df_sub_cluster[df_sub_cluster["rank"] == 1].shape[0]
winrate = 100 * n_rank1 / n_row
meta_report["winrate"] = round(winrate, 5)
mean_rank = df_sub_cluster["rank"].mean()
meta_report["mean_rank"] = round(mean_rank, 5)
s_median_type = df_sub_cluster[[
c for c in df_sub_cluster.columns if c in LIST_TYPE]].median()
median_types = s_median_type[s_median_type > 1].to_dict()
if not median_types:
print(f"\tskip undefined cluster {cluster_id} with size {n_row}")
continue
meta_report["types"] = median_types
s_mean_pkm = df_sub_cluster[[
c for c in df_sub_cluster.columns if c in LIST_POKEMON]].mean()
mean_pkm = s_mean_pkm[s_mean_pkm > .333].to_dict()
meta_report["pokemons"] = {k: round(mean_pkm[k], 5) for k in mean_pkm}
list_team = []
for _, row in df_sub_cluster.iterrows():
team_data = {}
team_data["cluster_id"] = cluster_id
team_data["rank"] = row["rank"]
team_data["x"] = row["x"]
team_data["y"] = row["y"]
list_pkmn = row[[i for i in row.index if i in LIST_POKEMON]]
team_data["pokemons"] = list_pkmn[list_pkmn != 0].to_dict()
list_team.append(team_data)
meta_report["teams"] = list_team
meta_report["x"] = np.mean([k["x"] for k in list_team])
meta_report["y"] = np.mean([k["y"] for k in list_team])
list_meta_report.append(meta_report)
return list_meta_report
def export_data_mongodb(list_data, db_name, collection_name):
uri = os.getenv("MONGO_URI")
client = MongoClient(uri)
db = client[db_name]
collection = db[collection_name]
collection.delete_many({})
collection.insert_many(list_data)
client.close()
def plot_cluster_parameters(df, list_sample, list_epsilon):
# compute graph size
n_sample = len(list_sample)
n_epsilon = len(list_epsilon)
n_plot = n_sample * n_epsilon
_, ax = plt.subplots(n_sample, n_epsilon, figsize=[10, 10])
for idx, (spl, eps) in enumerate(itools.product(list_sample, list_epsilon)):
print(
f"{datetime.now().time()} subplot {idx+1}/{n_plot} epsilon={eps} samples={spl} ...")
# apply DBSCAN on dataframe copy
df_cluster = df.copy()
cluster = DBSCAN(eps=eps, min_samples=spl).fit(df_cluster)
df_cluster.insert(0, "cluster_id", cluster.labels_)
# plot all points in black
sub_plt = ax[math.floor(idx / n_epsilon)][idx % n_epsilon]
sub_plt.set_title(f"epsilon={eps} min_samples={spl}")
sub_plt.scatter(df_cluster["x"],
df_cluster["y"], color="black", alpha=.1)
colors = ColorGenerator()
list_cluster_id = list(set(cluster.labels_))
if (-1 in list_cluster_id):
list_cluster_id.remove(-1)
# for each cluster
for cluster_id in list_cluster_id:
df_sub_cluster = df_cluster[df_cluster["cluster_id"] == cluster_id]
# plot scatter points of cluster
sub_plt.scatter(
df_sub_cluster["x"], df_sub_cluster["y"], alpha=.33, c=colors.next())
plt.show()
def plot_tsne_parameters(df, list_perplexity):
# compute graph size
n_perplexity = len(list_perplexity)
multi_axes = n_perplexity > 3
n_rows = 2 if multi_axes else 1
n_cols = math.floor(n_perplexity/2) if multi_axes else n_perplexity
_, ax = plt.subplots(n_rows, n_cols, figsize=[10, 10])
for idx, ppx in enumerate(list_perplexity):
print(
f"{datetime.now().time()} subplot {idx+1}/{n_perplexity} perplexity={ppx} ...")
# apply t-SNE
tsne = TSNE(n_components=2, perplexity=ppx, method="barnes_hut",
init="pca", n_iter=4000, learning_rate="auto")
df_tsne = pd.DataFrame(tsne.fit_transform(df))
# plot
sub_plt = ax[math.floor(idx/n_cols)][idx %
n_cols] if multi_axes else ax[idx]
sub_plt.set_title(f"perplexity={ppx}")
sub_plt.scatter(df_tsne[0], df_tsne[1], color="black", alpha=.33)
plt.show()
def main():
print(f"{datetime.now().time()} load data from MongoDB")
time_now = math.floor(datetime.now().timestamp() * 1000)
time_limit = time_now - 15 * (24 * 60 * 60 * 1000)
json_data = load_data_mongodb(time_limit)
print(f"{datetime.now().time()} creating item data...")
items = create_item_data(json_data)
export_data_mongodb(items, "test", "items-statistic")
#print(f"{datetime.now().time()} creating pokemon data...")
#pokemons = create_pokemon_data(json_data)
#export_data_mongodb(pokemons, "test", "pokemons-statistic")
print(f"{datetime.now().time()} creating pokemon data with threshold...")
pokemons = create_pokemon_data_elo_threshold(json_data)
export_data_mongodb(pokemons, "test", "pokemons-statistic-v2")
#print(f"{datetime.now().time()} creating dataframe...")
#df_match = create_dataframe(json_data)
#print(f"{datetime.now().time()} applying t-SNE...")
#df_filtered = df_match[LIST_TYPE]
#df_tsne = apply_tsne(df_filtered, 50)
#plot_tsne_parameters(df_filtered, [20,50])
#print(f"{datetime.now().time()} applying DBSCAN...")
#df_cluster = apply_clustering(df_tsne, 2, 30)
#plot_cluster_parameters(df_tsne, [10,20,30,40,50,100], [1,2,3,4,5,6,7])
#print(f"{datetime.now().time()} create meta report...")
#df_concat = pd.concat([df_match, df_cluster], axis=1)
#report = get_meta_report(df_concat)
#print(f"{datetime.now().time()} write output file...")
#export_data_mongodb(report, "test", "meta")
if __name__ == "__main__":
main()