
SMECC – A SME-C compiler using ROSE

Vincent Lanore

December 10, 2012

1 Presentation

SMECC (for SME-C Compiler) is a C99/C++ compiler able to process
SMECY pragmas to map function calls to hardware accelerators. SMECC is
written using ROSE [?, ?], a tool to write source-to-source translators. First,
input code is parsed using ROSE front-end (depends on the input language)
into a SageIII AST (ROSE’s AST). Then, SMECY pragmas are processed
and translated into calls to the SMECY API. Finally, the ROSE backend
is called to produce C code with calls to the SMECY API which can be
compiled using a regular compiler.

2 Features

SMECC currently supports the following features :

• translation of #pragma smecy map directives applied to function calls
of the form function(parameters);, varName = function(parameters);
or type varName = function(parameters);;

• support from following arg clauses : type (in, out...), size and range;

• verification of the contiguity of the vector arguments in memory;

• computing ranges to get the actual dimension of any argument, print-
ing warning when arguments with dimension > 1 are used as vectors;

• automatically finding the size of arrays if not specified in pragma.

3 How to use

Environment Before using the compiler a few environment variable should
be set.

• add SMECC directory to the $PATH :

1

export PATH=smecc_directory/:$PATH

• set SMECY_LIB to the directory containing the SMECY library :

export SMECY_LIB=smecy_lib_directory/

Usage SMECC works mostly like a regular C/C++ compiler. Most C/C++
usual compiler flags will work with a few exceptions and additions (see be-
low). By default, it will not compile smecy pragmas (see below).

Specific flags SMECC supports some specific flags. Here are a few exam-
ples, for a more complete list type smecc --help.

• -smecy triggers smecy pragmas translation/compilation; if pragmas
contain many expressions SMECCmay produce a lot of output: >\dev\null
is recommended to discard them;

• -smecy-accel asks for the generation of the accelerator parts, mainly
by outlining the map-ped function;

• --smecy_lib=smecy_lib_directory/ can be used to specify the path
to the SMECY library; if specified it will be used instead of the envi-
ronment variable SEMCY_LIB;

• -std=c99 should be used when compiling C99;

• -c will only translate input file instead of compiling it; with input file
fileName.C, SMECC will generate a rose_fileName.C file with calls
to SMECY API instead of SMECY pragmas;

• -fopenmp triggers OpenMP pragmas compilation using the back-end
compiler.

Example To compile a C99 input file with smecy and OpenMP pragmas
without useless output type:

smecc -std=c99 -fopenmp -smecy input.c

4 Known bugs and limitations

Features not yet implemented:

• FORTRAN support;

• only toy implementation of the SMECY API.

2

AstRewriteMechanism bugs:

• crash if the C++ input file has certain extensions (like ".cpp"), chang-
ing the extension to ".C" seems to solve the problem;

• the parser called for the strings is always in C++ mode (not C), com-
menting out a few lines in a ROSE header prevents front-end errors;

• the parsing of expressions is extremely slow (several seconds to parse
ten expressions) and generates 1 file per expression to parse.

Compatibility with ROSE OpenMP lowering

• ROSE OpenMP built-in support conflicts with smecy lowering and
requires special handling;

• OpenMP files lowered using XOMP library require special linking, see
in rose_install_dir/src/midend/programTransformation/ompLowering/
for the library files.

Other bugs

• if -smecy is not set, multi-line pragmas will lose their \ and fail to
compile.

References

3

	Presentation
	Features
	How to use
	Known bugs and limitations

