-
Notifications
You must be signed in to change notification settings - Fork 1
/
Presentation-B.tex
374 lines (324 loc) · 10.9 KB
/
Presentation-B.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
\documentclass{beamer}
%\usepackage{beamerthemesplit}
\usepackage{tikz,caption}
\usetikzlibrary{trees}
\title{Computational Physics Group Project: \\ Ecosystem: predator and prey}
\author{David Hicks\\ Weiyao Ke \\ Shagun Maheshwari \\ Fan Zhang}
\date{\today}
\begin{document}
\frame{\titlepage}
\section[Outline]{Outline}
\frame{\tableofcontents}
\section{Introduction to eco-system modeling}
\frame
{
\frametitle{What are Predator Prey models and where are they used?}
Systems involving competitive interaction of two "species" are some form of predator prey systems. \\
\begin{figure}[H]
\centering
\includegraphics[width = 0.2\textwidth]{./pics/resource_consumer.jpeg}
\includegraphics[width = 0.25\textwidth]{./pics/Plant_herbivore.jpeg}
\includegraphics[width = 0.31\textwidth]{./pics/Parasite_host.jpeg}
\label{Intro}
\end{figure}
They deal with the general loss-win interactions and hence may have applications outside of ecosystems.
}
\frame
{
\frametitle{Population interaction of predator and prey in eco-system}
\begin{figure}[htbp]
\begin{center}
\includegraphics[width=0.4\textwidth]{./pics/predator_prey2.jpeg}
\caption{http://www.anselm.edu/homepage/jpitocch/genbi101/ecology1intropops.html}
\label{default}
\end{center}
\end{figure}
}
\frame
{
\frametitle{A simplified deterministic mode: L-V equation}
The dynamics of biological systems consist of one predator and one prey can be described by Lotka-Volterra (LV) equations:
\begin{eqnarray*}
\frac{dx}{dt} &=& \alpha x - \beta x y = x(\alpha - \beta y) \\
\frac{dy}{dt} &=& - \gamma y + \delta x y = - y (\gamma - \delta x)
\end{eqnarray*}
Where, x is the number of prey, y is the number of predator, $\frac{dx}{dt}$ and $\frac{dy}{dt}$ represent the growth rates of two populations, and $\alpha, \beta, \gamma$ and $\delta$ are parameters describing the interaction of two species. \\
}
\frame
{
\frametitle{A simplified deterministic mode: L-V equation}
When the biological system has reached eco-equilibrium, the number of predator and prey are supposed to be either situation below.
\begin{itemize}
\item 1. $x = 0, y = 0$: Both species extinct.
\item 2. $x = \frac{\gamma}{\delta}, y = \frac{\alpha}{\beta}$: Predator and Prey reach a periodic stable situation. The number of animals evolve in a sinusoidal way.
\end{itemize}
\medskip \medskip
Disadvantage: number of species, limit of interaction. \\
Advanced model: competitive L-V equation for trophic interaction; generalized L-V equation for multiple species.
}
\section{Simulation and Implementation}
\frame
{
\frametitle{Simulation of a eco-system with predator and prey}
A simulation keep the essential nature of the interaction between and within the species, and predict the evolution of population step by step.
\begin{itemize}
\item<1->{Both predator and prey reproduces when they reach the age of reproduction}
\item<2->{Predator feeds on prey.}
\item<3->{Predator and prey will die out if maximum age is reached or starved for enough long time}
\item<4->{However, simulation is a random process and change the deterministic nature of LV equation (more realistic).}
\end{itemize}
}
\frame
{
\frametitle{Structural setup}
\tikzstyle{every node}=[anchor=west]
\begin{tikzpicture}
[grow via three points={one child at (0.5,-0.5) and two children at (0.5,-0.5) and (0.5,-1)}, edge from parent path={(\tikzparentnode.south) |- (\tikzchildnode.west)}]
\node {Animal Class $\rightarrow$ Deer/ Wolf}
child{ node{variables}
child { node {presentation position}}
child { node {previous position}}
child { node {reproducing age variable}}
child { node {starving age variable}}
}
child [missing] {}
child [missing] {}
child [missing] {}
child [missing] {}
child{ node{constants}
child { node {starvation age}}
child { node {reproduction age}}
}
child [missing] {}
child [missing] {}
child{ node{functions}
child { node {check status: live/dead}}
child { node {check maturity: procreate/not}}
};
\end{tikzpicture}
}
\frame
{
\frametitle{Structural setup of the code}
\tikzstyle{every node}=[anchor=west]
\begin{tikzpicture}
[grow via three points={one child at (0.5,-0.5) and two children at (0.5,-0.5) and (0.5,-1)}, edge from parent path={(\tikzparentnode.south) |- (\tikzchildnode.west)}]
\node {Eco-system}
child{ node{variables}
child { node {a list of deer}}
child { node {a list of wolves}}
child { node {occupation matrix (0, 1, 2) $\rightarrow$ (vacant, deer, woof)}}
child { node {system time}}
}
child [missing] {}
child [missing] {}
child [missing] {}
child [missing] {}
child{ node{constants}
child { node {Initialisation parameters: world size, starvation ages}}
}
child [missing] {}
child{ node{functions}
child { node {initialisation}}
child { node {time evolution}}
};
\end{tikzpicture}
}
\frame
{
\frametitle{Initialisation}
A sanity simulation requires several constrains on the initialisation of parameters.
\begin{itemize}
\item<1->{Reproduction age of predators must be larger than their starvation age. (Or else wolf can sustain themselves ...)}
\item<2->{Starvation age of the deer is extremely large. (Always enough plants!)}
\item<3->{A realistic population always have some age structures, so we use a uniform initial age distribution for the animals.}
\end{itemize}
}
\frame
{
\frametitle{Evolution of Wolves}
We set up a $N \times N$ grid and simulate the eco-system with L-V equation. \\
\begin{itemize}
\item<1->{Step $1$: check wolf and deer population, increase its age, and see whether a single animal has starved to death.}
\item<2->{Step $2$: evolution of wolves:
\begin{figure}[htb]
\begin{center}
\includegraphics[width=\textwidth]{./pics/wolf.jpeg}
\label{default}
\end{center}
\end{figure}
}
\end{itemize}
}
\frame
{
\frametitle{Evolution of deer}
Evolution of deers: \\
\begin{itemize}
\item<1->{Step 1: Delete all unfortunate deers.}
\item<2->{Setp 2: Evolution of live deers.
\begin{figure}[htbp]
\begin{center}
\includegraphics[width=\textwidth]{./pics/goat.jpeg}
\label{default}
\end{center}
\end{figure}
}
\end{itemize}
}
\frame
{
\frametitle{Population interaction of predator and prey in eco-system}
\begin{figure}[htbp]
\begin{center}
\includegraphics[width=1\textwidth]{./pics/progressive-energy-loss.jpeg}
\caption{default}
\label{default}
\end{center}
\end{figure}
}
\frame
{
\frametitle{Generic results}
\begin{figure}[htbp]
\begin{center}
\includegraphics[width=0.6\textwidth]{./pics/age_structure.png}
\caption{Initialised without age structure. This is an example of wolf distinction.}
\label{default}
\end{center}
\end{figure}
}
\frame
{
\frametitle{Generic results}
\begin{figure}[htbp]
\begin{center}
\includegraphics[width=0.8\textwidth]{./pics/phase_space.png}
\caption{Initialised with uniform age structure. A quasi-periodic evolution is obtained.}
\label{default}
\end{center}
\end{figure}
}
\frame
{
\frametitle{Parameter Search}
\underline{5 parameters to test (5-D parameter space)}
\begin{itemize}
\item{\textbf{Initial population of deer}}
\item{\textbf{Initial population of wolves}}
\item{Reproduction age of deer}
\item{Reproduction age of wolf}
\item{Starvation "age" of wolf}
\end{itemize}
\underline{Reduce to 4 dimensions (4-D)}
\begin{itemize}
\item{\textbf{Ratio of initial populations : Size of point}}
\item{Reproduction age of deer : x-axis}
\item{Reproduction age of wolf : y-axis}
\item{Starvation "age" of wolf : z-axis}
\end{itemize}
}
\frame
{
\frametitle{Results of Full Parameter Search}
\begin{figure}[H]
\includegraphics[width = 1\textwidth]{./pics/Eco_All_param_front.png}
\end{figure}
}
\frame
{
\frametitle{Results of Full Parameter Search}
\begin{figure}[H]
\includegraphics[width = 1\textwidth]{./pics/Eco_All_param_rep_v_rep.png}
\end{figure}
}
\frame
{
\frametitle{Results of Full Parameter Search}
\begin{figure}[H]
\includegraphics[width = 1\textwidth]{./pics/Eco_All_param_wage_v_wstarve.png}
\end{figure}
}
\frame
{
\frametitle{Results of Full Parameter Search}
\begin{figure}[H]
\includegraphics[width = 1\textwidth]{./pics/Eco_All_param_wstarve_v_drep.png}
\end{figure}
}
\frame
{
\frametitle{Results of Full Parameter Search}
\begin{figure}[H]
\includegraphics[width = 1\textwidth]{./pics/Zoomedin_3D.png}
\end{figure}
}
\frame
{
\frametitle{Results of Full Parameter Search}
The following is an excerpt from the paper, "A. K. Dewdney, Computer Recreations" :
\begin{figure}[H]
\centering
\includegraphics[width = 0.5\textwidth]{./pics/paper_predatorprey.png}
\label{refpaper}
\end{figure}
}
\frame
{
\setbeamertemplate{caption}{\insertcaption\par}
\frametitle{Results of Restricted Parameter Search}
\begin{figure}[ht]
\centering
\begin{minipage}[b]{.3\linewidth}
\includegraphics[width = 1\linewidth]{./pics/Restricted_Parameter_space_d2500_w250.png}
\caption{\tiny{Deer: 2500; Wolves: 250}}
\end{minipage}
\quad
\begin{minipage}[b]{.3\linewidth}
\includegraphics[width = 1\linewidth]{./pics/Restricted_Parameter_space_d3000_w500.png}
\caption{\tiny{Deer: 3000; Wolves: 500}}
\end{minipage}
\begin{minipage}[b]{.3\linewidth}
\includegraphics[width = 1\linewidth]{./pics/Restricted_Parameter_space_d2000_w2000.png}
\caption{\tiny{Deer: 2000; Wolves: 2000}}
\end{minipage}
\end{figure}
\begin{figure}[ht]
\centering
\begin{minipage}[b]{.27\linewidth}
\includegraphics[width = 1\linewidth]{./pics/Restricted_Parameter_space_d500_w3000.png}
\caption{\tiny{Deer: 500; Wolves: 3000}}
\end{minipage}
\quad
\begin{minipage}[b]{.27\linewidth}
\includegraphics[width = 1\linewidth]{./pics/Restricted_Parameter_space_d250_w2500.png}
\caption{\tiny{Deer: 250; Wolves: 2500}}
\end{minipage}
\end{figure}
}
\frame
{
\frametitle{Population interaction of predator and prey in eco-system}
\begin{figure}[htbp]
\begin{center}
\includegraphics[width=1\textwidth]{./pics/progressive-energy-loss.jpeg}
\caption{default}
\label{default}
\end{center}
\end{figure}
}
\section{Results and discussion}
\frame
{
\frametitle{Ecosystem at Equilibrium}
Parameters used:
\begin{itemize}
\item{Initial number of deer: 2,500}
\item{Initial number of wolves: 250}
\item{Deer reproduction rate: 5}
\item{Wolf reproduction rate: 14}
\item{Wolf starvation rate: 11}
\end{itemize}
\center{ Animation Time! }
}
\end{document}