diff --git a/DeepPurpose/DTI.py b/DeepPurpose/DTI.py index de625f7..2139c4f 100644 --- a/DeepPurpose/DTI.py +++ b/DeepPurpose/DTI.py @@ -587,10 +587,7 @@ def load_pretrained(self, path): if not os.path.exists(path): os.makedirs(path) - if self.device[:4] == 'cuda': - state_dict = torch.load(path) - else: - state_dict = torch.load(path, map_location = torch.device('cpu')) + state_dict = torch.load(path, map_location = torch.device('cpu')) # to support training from multi-gpus data-parallel: if next(iter(state_dict))[:7] == 'module.': diff --git a/README.md b/README.md index 7e9d946..06af574 100644 --- a/README.md +++ b/README.md @@ -593,7 +593,7 @@ Checkout [Dataset Tutorial](DEMO/load_data_tutorial.ipynb). We provide more than 10 pretrained models. Please see [Pretraining Model Tutorial](DEMO/load_pretraining_models_tutorial.ipynb) on how to load them. It is as simple as ```python -from DeepPurpose import models +from DeepPurpose import DTI as models net = models.model_pretrained(model = 'MPNN_CNN_DAVIS') or net = models.model_pretrained(FILE_PATH) diff --git a/setup.py b/setup.py index 33ca28d..7b35d22 100644 --- a/setup.py +++ b/setup.py @@ -15,7 +15,7 @@ def readme(): name="DeepPurpose", packages = ['DeepPurpose'], package_data={'DeepPurpose': ['ESPF/*']}, - version="0.1.0", + version="0.1.1", author="Kexin Huang, Tianfan Fu", license="BSD-3-Clause", author_email="kexinhuang@hsph.harvard.edu",