Skip to content

Commit 559a5cb

Browse files
committed
update urls
1 parent 2150aaa commit 559a5cb

File tree

3 files changed

+7
-7
lines changed

3 files changed

+7
-7
lines changed

README.Rmd

+3-3
Original file line numberDiff line numberDiff line change
@@ -16,10 +16,10 @@ knitr::opts_chunk$set(
1616
<!-- badges: start -->
1717
[![R build status](https://github.com/kgoldfeld/simstudy/workflows/R-CMD-check/badge.svg?branch=main)](https://github.com/kgoldfeld/simstudy/actions){target="_blank"}
1818
[![CRAN status](https://www.r-pkg.org/badges/version/simstudy)](https://CRAN.R-project.org/package=simstudy){target="_blank"}
19-
[![status](https://joss.theoj.org/papers/640fd4333948933b2817343e86df3424/status.svg)](https://joss.theoj.org/papers/640fd4333948933b2817343e86df3424){target="_blank"}
19+
[![status](https://joss.theoj.org/papers/10.21105/joss.02763/status.svg)](https://joss.theoj.org/papers/10.21105/joss.02763){target="_blank"}
2020
[![CRAN downloads](https://cranlogs.r-pkg.org/badges/grand-total/simstudy)](https://CRAN.R-project.org/package=simstudy){target="_blank"}
21-
[![codecov](https://codecov.io/gh/kgoldfeld/simstudy/branch/main/graph/badge.svg)](https://codecov.io/gh/kgoldfeld/simstudy){target="_blank"}
22-
[![Lifecycle: stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://www.tidyverse.org/lifecycle/#stable){target="_blank"}
21+
[![codecov](https://app.codecov.io/gh/kgoldfeld/simstudy/branch/main/graph/badge.svg)](https://app.codecov.io/gh/kgoldfeld/simstudy){target="_blank"}
22+
[![Lifecycle: stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html){target="_blank"}
2323
<!-- badges: end -->
2424

2525
The `simstudy` package is a collection of functions that allow users to generate simulated data sets in order to explore modeling techniques or better understand data generating processes. The user defines the distributions of individual variables, specifies relationships between covariates and outcomes, and generates data based on these specifications. The final data sets can represent randomized control trials, repeated measure designs, cluster randomized trials, or naturally observed data processes. Other complexities that can be added include survival data, correlated data, factorial study designs, step wedge designs, and missing data processes.

README.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -9,12 +9,12 @@ simstudy
99
status](https://github.com/kgoldfeld/simstudy/workflows/R-CMD-check/badge.svg?branch=main)](https://github.com/kgoldfeld/simstudy/actions)
1010
[![CRAN
1111
status](https://www.r-pkg.org/badges/version/simstudy)](https://CRAN.R-project.org/package=simstudy)
12-
[![status](https://joss.theoj.org/papers/640fd4333948933b2817343e86df3424/status.svg)](https://joss.theoj.org/papers/640fd4333948933b2817343e86df3424)
12+
[![status](https://joss.theoj.org/papers/10.21105/joss.02763/status.svg)](https://joss.theoj.org/papers/10.21105/joss.02763)
1313
[![CRAN
1414
downloads](https://cranlogs.r-pkg.org/badges/grand-total/simstudy)](https://CRAN.R-project.org/package=simstudy)
15-
[![codecov](https://codecov.io/gh/kgoldfeld/simstudy/branch/main/graph/badge.svg)](https://codecov.io/gh/kgoldfeld/simstudy)
15+
[![codecov](https://app.codecov.io/gh/kgoldfeld/simstudy/branch/main/graph/badge.svg)](https://app.codecov.io/gh/kgoldfeld/simstudy)
1616
[![Lifecycle:
17-
stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://www.tidyverse.org/lifecycle/#stable)
17+
stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html)
1818
<!-- badges: end -->
1919

2020
The `simstudy` package is a collection of functions that allow users to

vignettes/correlated.Rmd

+1-1
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@ dt[,round(sqrt(diag(var(cbind(a0, a1)))),1)]
101101

102102
Two additional functions facilitate the generation of correlated data from *binomial*, *poisson*, *gamma*, and *uniform* distributions: `genCorGen` and `addCorGen`.
103103

104-
`genCorGen` is an extension of `genCorData`. These functions draw on copula-based methods to generate the data. (This [Wikipedia page](https://bit.ly/31vAxFf) provides a general introduction and copula-based modeling can be conducted in `R` using package [copula](https://cran.r-project.org/web/packages/copula/index.html).) In the first example, we are generating data from a multivariate Poisson distribution. We start by specifying the mean of the Poisson distribution for each new variable, and then we specify the correlation structure, just as we did with the normal distribution.
104+
`genCorGen` is an extension of `genCorData`. These functions draw on copula-based methods to generate the data. (This [Wikipedia page](https://en.wikipedia.org/wiki/Copula_(probability_theory)) provides a general introduction and copula-based modeling can be conducted in `R` using package [copula](https://cran.r-project.org/package=copula).) In the first example, we are generating data from a multivariate Poisson distribution. We start by specifying the mean of the Poisson distribution for each new variable, and then we specify the correlation structure, just as we did with the normal distribution.
105105

106106
```{r}
107107
l <- c(8, 10, 12) # lambda for each new variable

0 commit comments

Comments
 (0)