-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdft.py
64 lines (45 loc) · 1.59 KB
/
dft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import math
def roots_of_unity(n: int) -> list[complex]:
"""Returns the nth roots of unity"""
return [math.e ** (2j * math.pi * k / n) for k in range(n)]
def dft_naive(A: list[complex]) -> list[complex]:
"""Naive implementation of DFT"""
n = len(A)
if abs(math.frexp(n)[0]) != 0.5:
raise ValueError("Number of samples must be an integer power of 2.")
roots = roots_of_unity(n)
output = [0 + 0j for _ in range(n)]
for i in range(n):
sum = 0
p = 1
for j in range(n):
sum += A[j] * p
p *= roots[i]
output[i] = sum
return output
def fft(A: list[complex]) -> list[complex]:
"""Returns the DFT of A using the Fast Fourier Tranform algorithm"""
n = len(A)
if abs(math.frexp(n)[0]) != 0.5:
raise ValueError("Number of samples must be an integer power of 2.")
if n == 1:
return A
roots = roots_of_unity(n)
A_even = [A[i] for i in range(0, len(A), 2)]
A_odd = [A[i] for i in range(1, len(A), 2)]
y_even = fft(A_even)
y_odd = fft(A_odd)
y = [0 + 0j for _ in range(n)]
for k in range(n // 2):
y[k] = y_even[k] + roots[k] * y_odd[k]
y[k + n // 2] = y_even[k] - roots[k] * y_odd[k]
return y
def inverse_fft(A: list[complex]) -> list[complex]:
"""Returns the Inverse DFT of A using the Fast Fourier Tranform algorithm"""
n = len(A)
if abs(math.frexp(n)[0]) != 0.5:
raise ValueError("Number of samples must be an integer power of 2.")
y = fft(A)
y.reverse()
y.insert(0, y.pop())
return [x / n for x in y]