-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix.py
125 lines (97 loc) · 3.5 KB
/
matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import math
import numpy as np
matrix = np.matrix[float, np.dtype[np.float64]]
def matmul_naive(A: matrix, B: matrix) -> matrix:
"""Naive implementation of matrix multiplication"""
if A.shape[1] != B.shape[0]:
raise ValueError(f"Invalid dimensions of matrices: {A.shape} x {B.shape} ")
n, m = A.shape
output = np.zeros((n, m))
for i in range(n):
for j in range(m):
product = 0
for k in range(n):
product += A[i, k] * B[k, j]
output[i, j] = product
return matrix(output)
def matmul_dnc(A: matrix, B: matrix) -> matrix:
"""Multiplies matrices A and B using the conquer method"""
n, m = A.shape
if n != m:
raise Exception("Matrices must be square")
if A.shape != B.shape:
raise ValueError("Matrices must have the same shape")
if n == 1:
return matmul_naive(A, B)
a11, a12, a21, a22 = (
A[: n // 2, : n // 2],
A[: n // 2, n // 2 :],
A[n // 2 :, : n // 2],
A[n // 2 :, n // 2 :],
)
b11, b12, b21, b22 = (
B[: n // 2, : n // 2],
B[: n // 2, n // 2 :],
B[n // 2 :, : n // 2],
B[n // 2 :, n // 2 :],
)
C11 = matmul_dnc(a11, b11) + matmul_dnc(a12, b21)
C12 = matmul_dnc(a11, b12) + matmul_dnc(a12, b22)
C21 = matmul_dnc(a21, b11) + matmul_dnc(a22, b21)
C22 = matmul_dnc(a21, b12) + matmul_dnc(a22, b22)
return matrix(np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22)))))
def matmul_strassen(A: matrix, B: matrix) -> matrix:
"""Multiplies matrices A and B using Strassen's algorithm"""
n, m = A.shape
if n != m:
raise Exception("Matrices must be square")
if A.shape != B.shape:
raise ValueError("Matrices must have the same shape")
if n == 1:
return matmul_naive(A, B)
# When n is not a power of 2, pad to the closest power of 2
if abs(math.frexp(n)[0]) != 0.5:
padding = 2 ** math.ceil(math.log2(n)) - n
return matmul_strassen(
matrix(np.pad(A, ((0, padding), (0, padding)), "empty")),
matrix(np.pad(B, ((0, padding), (0, padding)), "empty")),
)[:n, :n]
half = n // 2
a11, a12, a21, a22 = (
A[:half, :half],
A[:half, half:],
A[half:, :half],
A[half:, half:],
)
b11, b12, b21, b22 = (
B[:half, :half],
B[:half, half:],
B[half:, :half],
B[half:, half:],
)
P1 = matmul_strassen(matrix(a11 + a22), matrix(b11 + b22))
P2 = matmul_strassen(matrix(a21 + a22), b11)
P3 = matmul_strassen(a11, matrix(b12 - b22))
P4 = matmul_strassen(a22, matrix(-b11 + b21))
P5 = matmul_strassen(matrix(a11 + a12), b22)
P6 = matmul_strassen(matrix(-a11 + a21), matrix(b11 + b12))
P7 = matmul_strassen(matrix(a12 - a22), matrix(b21 + b22))
C11 = P1 + P4 - P5 + P7
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 + P3 - P2 + P6
return matrix(np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22)))))
def maxtrix_chain_order(A: list[int]):
"""Computes the optimal order for matrix multiplcation"""
m = np.zeros((len(A), len(A)))
s = np.zeros((len(A), len(A)))
for subseq_len in range(2, len(A)):
for i in range(0, len(A) - subseq_len):
j = i + subseq_len
m[i, j] = float("inf")
for k in range(i + 1, j):
q = m[i, k] + m[k, j] + A[i] * A[k] * A[j]
if q < m[i, j]:
m[i, j] = q
s[i, j] = k
return s, m