-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathDataProcessor.py
70 lines (45 loc) · 1.64 KB
/
DataProcessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# coding: utf-8
# In[2]:
import pandas as pd
import numpy as np
import h5py
# In[24]:
input_step_size = 50
output_size = 30
sliding_window = False
file_name= 'bitcoin2012_2017_50_30_prediction.h5'
# In[19]:
df = pd.read_csv('data/bitstampUSD_1-min_data_2012-01-01_to_2017-05-31.csv').dropna().tail(1000000)
df['Datetime'] = pd.to_datetime(df['Timestamp'],unit='s')
df.head()
# In[30]:
prices= df.loc[:,'Close'].values
times = df.loc[:,'Close'].values
prices.shape
# In[31]:
outputs = []
inputs = []
output_times = []
input_times = []
if sliding_window:
for i in range(len(prices)-input_step_size-output_size):
inputs.append(prices[i:i + input_step_size])
input_times.append(times[i:i + input_step_size])
outputs.append(prices[i + input_step_size: i + input_step_size+ output_size])
output_times.append(times[i + input_step_size: i + input_step_size+ output_size])
else:
for i in range(0,len(prices)-input_step_size-output_size, input_step_size):
inputs.append(prices[i:i + input_step_size])
input_times.append(times[i:i + input_step_size])
outputs.append(prices[i + input_step_size: i + input_step_size+ output_size])
output_times.append(times[i + input_step_size: i + input_step_size+ output_size])
inputs= np.array(inputs)
outputs= np.array(outputs)
output_times = np.array(output_times)
input_times = np.array(input_times)
# In[34]:
with h5py.File(file_name, 'w') as f:
f.create_dataset("inputs", data = inputs)
f.create_dataset('outputs', data = outputs)
f.create_dataset("input_times", data = input_times)
f.create_dataset('output_times', data = output_times)