-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
128 lines (111 loc) · 5.09 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import json
import os
import argparse
import torch
import yaml
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm.autonotebook import tqdm
from utils.utils import *
from darknet import Darknet
from datasets.datasets import *
from utils.weight_init import *
def get_args():
parser = argparse.ArgumentParser('yolov3 detector test')
parser.add_argument('-p', '--project', type=str, default='shape', help='config file in /project/*yml')
parser.add_argument('-n', '--num_workers', type=int, default=0, help='the num_workers of dataloader')
parser.add_argument('--batch_size', type=int, default=8, help='the batch_size of dataloader')
parser.add_argument('--data_path', type=str, default=os.path.join('..', 'datasets', 'coco_shape'))
parser.add_argument('--load_weights',
type=str,
default=os.path.join('backup', 'shape_yolov3_final_199_11200.pth'),
help='pretrained models or recover training')
parser.add_argument('--stat_path', type=str, default='cfg', help='mean val and std val of dataset')
parser.add_argument('--conf_thresh', type=float, default=0.5)
parser.add_argument('--iou_thresh', type=float, default=0.5)
parser.add_argument('--float16', type=bool, default=False)
parser.add_argument('--imshow_all_images', type=bool, default=True,help='imshow all pred_images with labels')
parser.add_argument('--override', type=bool, default=True, help='override previous bbox results file if exists')
args = parser.parse_args()
return args
def test(opt, params):
if opt.override is True:
# if opt.override is True and not os.path.exists('{}2017_bbox_results.json'.format(params['test_set'])):
model = Darknet(cfg_path=params['cfg_path'])
# model.load_darknet_weights(opt.load_weights)
model.module_list.load_state_dict(torch.load(opt.load_weights))
print('读入模型成功!')
model.requires_grad_(False)
model.eval()
if params['num_gpus'] > 0:
model.cuda()
if opt.float16 is True:
model.half()
else:
return '{}2017_bbox_results.json'.format(params['test_set'])
if params['num_gpus'] == 0:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
else:
torch.manual_seed(42)
stat_txt_path = os.path.join(opt.stat_path, '{}_stat.txt'.format(opt.project))
test_set = DIYDataset(
path=os.path.join(opt.data_path, params['project_name']),
set_name=params['test_set'],
mean_std_path=stat_txt_path, #计算训练集的均值和方差
cal_mean_std=False,
transform=transforms.Compose([Normalizer(mean_std_path=stat_txt_path),
Augmenter(), Resizer(416)]))
test_params = {
'batch_size': opt.batch_size,
'shuffle': False,
'drop_last': False,
'collate_fn': collater,
'num_workers': opt.num_workers
}
test_generator = DataLoader(test_set, **test_params)
progress_bar = tqdm(test_generator)
yolo_results = []
for iter, data in enumerate(progress_bar):
imgs, img_ids = data['img'], data['img_id']
if params['num_gpus'] > 0:
imgs = imgs.cuda()
yolo_outputs = model(imgs)
pred_batch_imgs = NMS(img_ids,
yolo_outputs,
conf_thresh=opt.conf_thresh,
iou_thresh=opt.iou_thresh,
style='OR',
type='IoU')
yolo_results += pred_batch_imgs
with open('{}2017_bbox_results.json'.format(params['test_set']), 'w') as f:
json.dump(yolo_results, f)
return '{}2017_bbox_results.json'.format(params['test_set'])
def _eval(coco_gt, image_ids, pred_json_path): #image_ids是所有测试集有标注的图 pred_json_path是预测文件的路径
coco_pred = coco_gt.loadRes(pred_json_path)
print('所有类的BBox')
coco_eval = COCOeval(coco_gt, coco_pred, 'bbox')
coco_eval.params.imgIds = image_ids
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
for cat in coco_pred.cats.values():
print(f"{cat['name']}类的BBOX")
coco_eval.params.catIds = [cat['id']]
coco_eval.params.imgIds = image_ids
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if __name__ == '__main__':
opt = get_args()
params = parse_yml(f'projects/{opt.project}.yml')
pred_path = test(opt, params)
gt_json = os.path.join(opt.data_path, params['project_name'], 'annotations',
'instances_{}2017.json'.format(params['test_set']))
MAX_IMAGES = 10000
coco_gt = COCO(gt_json)
image_ids = coco_gt.getImgIds()[:MAX_IMAGES]
_eval(coco_gt, image_ids, pred_path)