You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I train and test the model on cityScapes to foggyCityScapes,but my mAP is 35.1, which is lower than 41.7 reported in the paper. I guess maybe there are some mistakes in my configs.
And here are my results:
AP for bus = 0.3952
AP for bicycle = 0.3204
AP for car = 0.5049
AP for motorcycle = 0.2490
AP for person = 0.3292
AP for rider = 0.4064
AP for train = 0.3154
AP for truck = 0.2855
Mean AP = 0.3508
Could you please check my config and give some suggestions?Thank you very much!
The text was updated successfully, but these errors were encountered:
I train and test the model on cityScapes to foggyCityScapes,but my mAP is 35.1, which is lower than 41.7 reported in the paper. I guess maybe there are some mistakes in my configs.
Here are my configs:
Called with args:
Namespace(aug=True, batch_size=1, binary=False, budget=0.3, checkepoch=1, checkpoint=0, checkpoint_interval=10000, checksession=1, class_agnostic=False, conf=True, conf_gamma=0.1, cuda=True, dataset='cityscape', dataset_t='foggy_cityscape', dc=None, detach=True, disp_interval=100, ef=False, eta=0.1, gamma=5, gc=False, image_dir='images', lam=0.01, lam2=0.1, large_scale=False, lc=False, load_name='models', load_name_conf=None, lr=0.001, lr_decay_gamma=0.1, lr_decay_step=5, mGPUs=False, max_epochs=8, net='vgg16', num_workers=0, optimizer='sgd', pl=True, pretrained_epoch=0, resume=False, save_dir='models', session=1, source_like=True, source_model=None, start_epoch=1, student_load_name='models', target_like=True, teacher_alpha=0.99, teacher_load_name='models', test_results_dir='test_results', threshold=0.8, use_tfboard=False, vis=False)
Using config:
{'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'CROP_RESIZE_WITH_MAX_POOL': False,
'CUDA': False,
'DATA_DIR': '/home/lch1999/myModel/data',
'DEDUP_BOXES': 0.0625,
'EPS': 1e-14,
'EXP_DIR': 'vgg16',
'FEAT_STRIDE': [16],
'GPU_ID': 0,
'MATLAB': 'matlab',
'MAX_NUM_GT_BOXES': 30,
'MOBILENET': {'DEPTH_MULTIPLIER': 1.0,
'FIXED_LAYERS': 5,
'REGU_DEPTH': False,
'WEIGHT_DECAY': 4e-05},
'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
'POOLING_MODE': 'align',
'POOLING_SIZE': 7,
'RESNET': {'FIXED_BLOCKS': 1, 'MAX_POOL': False},
'RESNET101_PATH': 'data/pretrained_model/resnet101_caffe.pth',
'RESNET50_PATH': 'data/pretrained_model/resnet50_caffe.pth',
'RNG_SEED': 3,
'ROOT_DIR': '/home/lch1999/myModel',
'TEST': {'BBOX_REG': True,
'HAS_RPN': True,
'MAX_SIZE': 1200,
'MODE': 'nms',
'NMS': 0.3,
'PROPOSAL_METHOD': 'gt',
'RPN_MIN_SIZE': 16,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'RPN_TOP_N': 5000,
'SCALES': [600],
'SVM': False},
'TRAIN': {'ASPECT_GROUPING': False,
'BATCH_SIZE': 256,
'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_NORMALIZE_TARGETS': True,
'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
'BBOX_REG': True,
'BBOX_THRESH': 0.5,
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'BIAS_DECAY': False,
'BN_TRAIN': False,
'DISPLAY': 10,
'DOUBLE_BIAS': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'GAMMA': 0.1,
'HAS_RPN': True,
'IMS_PER_BATCH': 1,
'LEARNING_RATE': 0.001,
'MAX_SIZE': 1200,
'MOMENTUM': 0.9,
'PROPOSAL_METHOD': 'gt',
'RPN_BATCHSIZE': 256,
'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 8,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 2000,
'RPN_POST_NMS_TOP_N_TARGET': 256,
'RPN_PRE_NMS_TOP_N': 12000,
'SCALES': [600],
'SNAPSHOT_ITERS': 5000,
'SNAPSHOT_KEPT': 3,
'SNAPSHOT_PREFIX': 'res101_faster_rcnn',
'STEPSIZE': [30000],
'SUMMARY_INTERVAL': 180,
'TRIM_HEIGHT': 600,
'TRIM_WIDTH': 600,
'TRUNCATED': False,
'USE_ALL_GT': True,
'USE_FLIPPED': True,
'USE_GT': False,
'WEIGHT_DECAY': 0.0005},
'USE_GPU_NMS': True,
'VGG_PATH': '/home/lch1999/pretrainvggforUMT/vgg16_caffe.pth'}
And here are my results:
AP for bus = 0.3952
AP for bicycle = 0.3204
AP for car = 0.5049
AP for motorcycle = 0.2490
AP for person = 0.3292
AP for rider = 0.4064
AP for train = 0.3154
AP for truck = 0.2855
Mean AP = 0.3508
Could you please check my config and give some suggestions?Thank you very much!
The text was updated successfully, but these errors were encountered: