Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

About the accuracy on cityScapes to foggyCityScapes #17

Open
lch1999 opened this issue May 11, 2023 · 0 comments
Open

About the accuracy on cityScapes to foggyCityScapes #17

lch1999 opened this issue May 11, 2023 · 0 comments

Comments

@lch1999
Copy link

lch1999 commented May 11, 2023

I train and test the model on cityScapes to foggyCityScapes,but my mAP is 35.1, which is lower than 41.7 reported in the paper. I guess maybe there are some mistakes in my configs.

Here are my configs:
Called with args:
Namespace(aug=True, batch_size=1, binary=False, budget=0.3, checkepoch=1, checkpoint=0, checkpoint_interval=10000, checksession=1, class_agnostic=False, conf=True, conf_gamma=0.1, cuda=True, dataset='cityscape', dataset_t='foggy_cityscape', dc=None, detach=True, disp_interval=100, ef=False, eta=0.1, gamma=5, gc=False, image_dir='images', lam=0.01, lam2=0.1, large_scale=False, lc=False, load_name='models', load_name_conf=None, lr=0.001, lr_decay_gamma=0.1, lr_decay_step=5, mGPUs=False, max_epochs=8, net='vgg16', num_workers=0, optimizer='sgd', pl=True, pretrained_epoch=0, resume=False, save_dir='models', session=1, source_like=True, source_model=None, start_epoch=1, student_load_name='models', target_like=True, teacher_alpha=0.99, teacher_load_name='models', test_results_dir='test_results', threshold=0.8, use_tfboard=False, vis=False)
Using config:
{'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'CROP_RESIZE_WITH_MAX_POOL': False,
'CUDA': False,
'DATA_DIR': '/home/lch1999/myModel/data',
'DEDUP_BOXES': 0.0625,
'EPS': 1e-14,
'EXP_DIR': 'vgg16',
'FEAT_STRIDE': [16],
'GPU_ID': 0,
'MATLAB': 'matlab',
'MAX_NUM_GT_BOXES': 30,
'MOBILENET': {'DEPTH_MULTIPLIER': 1.0,
'FIXED_LAYERS': 5,
'REGU_DEPTH': False,
'WEIGHT_DECAY': 4e-05},
'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
'POOLING_MODE': 'align',
'POOLING_SIZE': 7,
'RESNET': {'FIXED_BLOCKS': 1, 'MAX_POOL': False},
'RESNET101_PATH': 'data/pretrained_model/resnet101_caffe.pth',
'RESNET50_PATH': 'data/pretrained_model/resnet50_caffe.pth',
'RNG_SEED': 3,
'ROOT_DIR': '/home/lch1999/myModel',
'TEST': {'BBOX_REG': True,
'HAS_RPN': True,
'MAX_SIZE': 1200,
'MODE': 'nms',
'NMS': 0.3,
'PROPOSAL_METHOD': 'gt',
'RPN_MIN_SIZE': 16,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'RPN_TOP_N': 5000,
'SCALES': [600],
'SVM': False},
'TRAIN': {'ASPECT_GROUPING': False,
'BATCH_SIZE': 256,
'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_NORMALIZE_TARGETS': True,
'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
'BBOX_REG': True,
'BBOX_THRESH': 0.5,
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'BIAS_DECAY': False,
'BN_TRAIN': False,
'DISPLAY': 10,
'DOUBLE_BIAS': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'GAMMA': 0.1,
'HAS_RPN': True,
'IMS_PER_BATCH': 1,
'LEARNING_RATE': 0.001,
'MAX_SIZE': 1200,
'MOMENTUM': 0.9,
'PROPOSAL_METHOD': 'gt',
'RPN_BATCHSIZE': 256,
'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 8,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 2000,
'RPN_POST_NMS_TOP_N_TARGET': 256,
'RPN_PRE_NMS_TOP_N': 12000,
'SCALES': [600],
'SNAPSHOT_ITERS': 5000,
'SNAPSHOT_KEPT': 3,
'SNAPSHOT_PREFIX': 'res101_faster_rcnn',
'STEPSIZE': [30000],
'SUMMARY_INTERVAL': 180,
'TRIM_HEIGHT': 600,
'TRIM_WIDTH': 600,
'TRUNCATED': False,
'USE_ALL_GT': True,
'USE_FLIPPED': True,
'USE_GT': False,
'WEIGHT_DECAY': 0.0005},
'USE_GPU_NMS': True,
'VGG_PATH': '/home/lch1999/pretrainvggforUMT/vgg16_caffe.pth'}

And here are my results:
AP for bus = 0.3952
AP for bicycle = 0.3204
AP for car = 0.5049
AP for motorcycle = 0.2490
AP for person = 0.3292
AP for rider = 0.4064
AP for train = 0.3154
AP for truck = 0.2855
Mean AP = 0.3508

Could you please check my config and give some suggestions?Thank you very much!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant