-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
78 lines (60 loc) · 1.84 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from miniflow import *
##################################################################
#Testing working of Add and Mul node classes
x, y, z, a = Input(), Input(), Input(), Input()
add = Add(x, y, z, a)
mul = Mul(x, y, z, a)
feed_dict = {x: 10, y: 20, z: 25, a: 45}
graph = topological_sort(feed_dict)
forward_pass(graph)
print('Testing Add node output: ', add.value)
print('Testing Mul node output: ', mul.value)
###################################################################
#Testing the working of Linear Node class
print('Testing Linear node output:')
inputs, weights, bias = Input(), Input(), Input()
linear = Linear(inputs, weights, bias)
feed_dict = {
inputs: [6, 14, 3],
weights: [0.5, 0.25, 1.4],
bias: 2
}
graph = topological_sort(feed_dict)
forward_and_backward(graph)
print(linear.value)
X, W, b = Input(), Input(), Input()
f = Linear(X, W, b)
X_ = np.array([[-1., -2.], [-1, -2]])
W_ = np.array([[2., -3], [2., -3]])
b_ = np.array([-3., -5])
feed_dict = {X: X_, W: W_, b: b_}
graph = topological_sort(feed_dict)
forward_pass(graph)
print(f.value)
###################################################################
#Testing the working of Sigmoid activation function
print('Testing Sigmoid activation:')
X, W, b = Input(), Input(), Input()
f = Linear(X, W, b)
g = Sigmoid(f)
X_ = np.array([[-1., -2.], [-1, -2]])
W_ = np.array([[2., -3], [2., -3]])
b_ = np.array([-3., -5])
feed_dict = {X: X_, W: W_, b: b_}
graph = topological_sort(feed_dict)
forward_and_backward(graph)
print(g.value)
"""
Output should be:
[[ 1.23394576e-04 9.82013790e-01]
[ 1.23394576e-04 9.82013790e-01]]
"""
print("Checking Mean squared error implementation:")
y, a = Input(), Input()
cost = MSE(y, a)
y_ = np.array([1, 2, 3])
a_ = np.array([4.5, 5, 10])
feed_dict = {y: y_, a: a_}
graph = topological_sort(feed_dict)
forward_and_backward(graph)
print(cost.value)