-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtree_node_ranking.h
205 lines (167 loc) · 5.09 KB
/
tree_node_ranking.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#ifndef TREE_NODE_RANKING_H
#define TREE_NODE_RANKING_H
#include "array_id_func.h"
#include "count_range.h"
#include "id_sort.h"
#include <vector>
//! input graph must be a symmetric graph
//! The result is guaranteed to be optimal for trees. For non-trees there are no guarantees.
template<class Neighbors>
ArrayIDIDFunc compute_tree_node_ranking(const Neighbors&neighbors){
const int node_count = neighbors.preimage_count();
ArrayIDFunc<int>
parent(node_count),
child_first_order(node_count);
// Root tree at node 0
{
ArrayIDFunc<int>stack(node_count);
int stack_end = 0;
int next_order_pos = node_count;
stack[stack_end++] = 0;
parent.fill(-1);
parent[0] = -2;
while(stack_end != 0){
auto x = stack[--stack_end];
child_first_order[--next_order_pos] = x;
for(auto y:neighbors(x)){
if(parent(y) == -1){
assert(y != 0);
stack[stack_end++] = y;
parent[y] = x;
}
}
}
parent[0] = -1;
assert(next_order_pos == 0);
}
ArrayIDIDFunc level(node_count, 1);
// Compute node levels
{
struct SubTreeInfo{
std::vector<int>critical_list;
int size;
};
ArrayIDFunc<std::vector<SubTreeInfo>>node_children_info(node_count);
BitIDFunc crit(node_count);
crit.fill(false);
for(int i=0; i<node_count; ++i){
auto x = child_first_order[i];
auto&&children_info = node_children_info[x];
int children_count = children_info.size();
SubTreeInfo tree_info;
if(children_count == 0){
level[x] = 0;
tree_info = {{1}, 1};
}else if(children_count == 1){
auto&child_info = children_info[0];
int l = 1;
while(!child_info.critical_list.empty() && child_info.critical_list.back() == l){
child_info.critical_list.pop_back();
++l;
}
tree_info = std::move(child_info);
tree_info.critical_list.push_back(l);
++tree_info.size;
if(level.image_count() < l)
level.set_image_count(l);
level[x] = l-1;
}else{
tree_info.size = 1;
for(int i=0; i<children_count; ++i)
tree_info.size += children_info[i].size;
// Move largest sub tree to the position 0
{
int largest_sub_tree = 0;
int largest_sub_tree_size = children_info[0].size;
for(int i=1; i<children_count; ++i)
if(largest_sub_tree_size < children_info[i].size){
largest_sub_tree = i;
largest_sub_tree_size = children_info[i].size;
}
if(largest_sub_tree != 0)
std::swap(children_info[0], children_info[largest_sub_tree]);
}
// Move second largest sub tree to the position 1
{
int second_largest_sub_tree = 1;
int second_largest_sub_tree_size = children_info[1].size;
for(int i=2; i<children_count; ++i)
if(second_largest_sub_tree_size < children_info[i].size){
second_largest_sub_tree = i;
second_largest_sub_tree_size = children_info[i].size;
}
if(second_largest_sub_tree != 1)
std::swap(children_info[1], children_info[second_largest_sub_tree]);
}
// variable names come from http://www.sciencedirect.com/science/article/pii/0020019089901610
int max = 0;
int p = 0;
int q = 0;
for(int i = 1; i<children_count; ++i)
for(auto t:children_info[i].critical_list)
if(!crit(t)){
crit.set(t, true);
if(t > max)
max = t;
}else{
if(t > p)
p = t;
}
auto&&first_child_critical_list = children_info[0].critical_list;
for(int i = first_child_critical_list.size()-1; i>=0; --i){
int t = first_child_critical_list[i];
if(t > max)
break;
if(p >= t)
continue;
if(!crit(t)){
crit.set(t, true);
}else{
p = t;
}
}
for(int i=0; i<=p; ++i)
crit.set(i, false);
for(int i=p+1; i<=max; ++i){
if(!crit(i)){
if(q == 0){
q = i;
tree_info.critical_list = {q};
}
}else{
crit.set(i, false);
if(q != 0)
tree_info.critical_list.push_back(i);
}
}
if(q == 0){
while(!first_child_critical_list.empty() && first_child_critical_list.back() <= max)
first_child_critical_list.pop_back();
q = max+1;
while(!first_child_critical_list.empty() && first_child_critical_list.back() == q){
first_child_critical_list.pop_back();
++q;
}
tree_info.critical_list = std::move(first_child_critical_list);
tree_info.critical_list.push_back(q);
}else{
while(!first_child_critical_list.empty() && first_child_critical_list.back() <= max)
first_child_critical_list.pop_back();
assert(std::is_sorted(tree_info.critical_list.begin(), tree_info.critical_list.end()));
for(int i=tree_info.critical_list.size()-1; i>=0; --i)
first_child_critical_list.push_back(tree_info.critical_list[i]);
tree_info.critical_list = std::move(first_child_critical_list);
}
assert(q > 0);
if(level.image_count() < q)
level.set_image_count(q);
level[x] = q-1;
}
assert(std::is_sorted(tree_info.critical_list.begin(), tree_info.critical_list.end(), std::greater<int>()));
if(parent(x) != -1)
node_children_info[parent(x)].push_back(std::move(tree_info));
}
}
return level; // NVRO
}
#endif