-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMeasure.py
56 lines (44 loc) · 1.71 KB
/
Measure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
class Measure:
"""Class to implement a CNN-Generator
Args:
folder: folder with images
Returns: dictionary of images
"""
def __init__(self, folder):
self._folder = folder
self._image_dict = {}
# Define the different loss functions
def ssim(self, critic_fake_output):
""" ssim GAN loss
(Generator) -D(G(z|c))
"""
return -tf.reduce_mean(critic_fake_output)
def generator_loss(critic_fake_output):
""" Wasserstein GAN loss
(Generator) -D(G(z|c))
"""
return -tf.reduce_mean(critic_fake_output)
def wasserstein_loss(critic_real_output, critic_fake_output):
""" Wasserstein GAN loss
(Critic) D(G(z|c)) - D(x|c)
"""
return tf.reduce_mean(critic_fake_output) - tf.reduce_mean(
critic_real_output)
def compute_gradient_penalty(critic, x, fake_x):
c = tf.expand_dims(x[..., 0], -1)
batch_size = x.get_shape().as_list()[0]
eps_x = tf.random.uniform(
[batch_size] + [1] * (len(x.get_shape()) - 1)) # B, 1, 1, 1, 1
inter = eps_x * x + (1.0 - eps_x) * fake_x
with tf.GradientTape() as g:
g.watch(inter)
disc_inter_output = critic((inter,c), training=True)
grads = g.gradient(disc_inter_output, inter)
slopes = tf.sqrt(1e-8 + tf.reduce_sum(
tf.square(grads),
reduction_indices=tf.range(1, grads.get_shape().ndims)))
gradient_penalty = tf.reduce_mean(tf.square(slopes - 1.0))
return gradient_penalty