-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
84 lines (68 loc) · 3.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image import array_to_img
from LoadImages import LoadImages
from Split import SplitSets
from Generator import Generator
from Discriminator import Discriminator
# from Generator import Generator
# from Discriminator import Discriminator
# from Metrics import MSE, SSIM
class Train():
"""Class to load images, convert them to numpy arrays and bundle them in a dict
GAN nomenclature:
src - source, phone images
dst - destination, 360 images
Args:
folder: folder with images
Returns: dictionary of images
"""
def __init__(self, test_path):
self.test_path = test_path
self.dst_train_dict = dict()
self.dst_val_dict = dict()
self.src_train_dict = dict()
self.src_val_dict = dict()
self.test_array = np.array()
self.generatedArray = []
self.generatedImage = []
def Execute(self):
self.PrepImages()
self.TrainGAN()
def loadTestImage(self):
test_image = load_img(f'{self.test_path}')
test_array = img_to_array(test_image)
test_index = [i for i, x in enumerate(os.listdir('D:/360GAN/RegVid_100')) if x == 'VID_20201101_174245455 27920.jpg'][0]
return test_index, test_array
def PrepImages(self):
path_dst = 'D:/360GAN/360Vid_100'
path_src = 'D:/360GAN/RegVid_100'
test_index, self.test_array = self.loadTestImage()
dst_dict = LoadImages(path_dst).load_images()
src_dict = LoadImages(path_src).load_images()
#drop test image from set
del src_dict[test_index]
del dst_dict[test_index]
assert len(dst_dict) == len(src_dict), 'size mismatch (# of images dst != src)'
n_images = len(src_dict)
#image index to test on (counting starts from 0)
# this particular split
split1 = SplitSets()
train_set, val_set = split1.split_indexes(number_images=n_images, size_train_frac=0.8)
self.dst_train_dict = {train_key: dst_dict[train_key] for train_key in list(train_set)}
self.dst_val_dict = {val_key: dst_dict[val_key] for val_key in list(val_set)}
self.src_train_dict = {train_key: src_dict[train_key] for train_key in list(train_set)}
self.src_val_dict = {val_key: src_dict[val_key] for val_key in list(val_set)}
assert len(self.dst_train_dict) == len(self.src_train_dict), 'size mismatch (# of images in training dst != src)'
assert len(self.dst_val_dict) == len(self.src_val_dict), 'size mismatch (# of images in validation dst != src)'
assert (len(self.dst_train_dict) + len(self.dst_val_dict)) == len(dst_dict), 'size mismatch (# of images in training and validation != total images)'
def TrainGAN(self):
generator = Generator()
generator.build(src_train_dict)
discriminator = Discriminator()
discriminator.build()
def generateImage(self):
self.generatedImage = array_to_img(self.generatedArray)