forked from isaac-sim/IsaacGymEnvs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
franka_cube_stack.py
747 lines (617 loc) · 36.5 KB
/
franka_cube_stack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# Copyright (c) 2021-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import os
import torch
from isaacgym import gymtorch
from isaacgym import gymapi
from isaacgymenvs.utils.torch_jit_utils import quat_mul, to_torch, tensor_clamp
from isaacgymenvs.tasks.base.vec_task import VecTask
@torch.jit.script
def axisangle2quat(vec, eps=1e-6):
"""
Converts scaled axis-angle to quat.
Args:
vec (tensor): (..., 3) tensor where final dim is (ax,ay,az) axis-angle exponential coordinates
eps (float): Stability value below which small values will be mapped to 0
Returns:
tensor: (..., 4) tensor where final dim is (x,y,z,w) vec4 float quaternion
"""
# type: (Tensor, float) -> Tensor
# store input shape and reshape
input_shape = vec.shape[:-1]
vec = vec.reshape(-1, 3)
# Grab angle
angle = torch.norm(vec, dim=-1, keepdim=True)
# Create return array
quat = torch.zeros(torch.prod(torch.tensor(input_shape)), 4, device=vec.device)
quat[:, 3] = 1.0
# Grab indexes where angle is not zero an convert the input to its quaternion form
idx = angle.reshape(-1) > eps
quat[idx, :] = torch.cat([
vec[idx, :] * torch.sin(angle[idx, :] / 2.0) / angle[idx, :],
torch.cos(angle[idx, :] / 2.0)
], dim=-1)
# Reshape and return output
quat = quat.reshape(list(input_shape) + [4, ])
return quat
class FrankaCubeStack(VecTask):
def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render):
self.cfg = cfg
self.max_episode_length = self.cfg["env"]["episodeLength"]
self.action_scale = self.cfg["env"]["actionScale"]
self.start_position_noise = self.cfg["env"]["startPositionNoise"]
self.start_rotation_noise = self.cfg["env"]["startRotationNoise"]
self.franka_position_noise = self.cfg["env"]["frankaPositionNoise"]
self.franka_rotation_noise = self.cfg["env"]["frankaRotationNoise"]
self.franka_dof_noise = self.cfg["env"]["frankaDofNoise"]
self.aggregate_mode = self.cfg["env"]["aggregateMode"]
# Create dicts to pass to reward function
self.reward_settings = {
"r_dist_scale": self.cfg["env"]["distRewardScale"],
"r_lift_scale": self.cfg["env"]["liftRewardScale"],
"r_align_scale": self.cfg["env"]["alignRewardScale"],
"r_stack_scale": self.cfg["env"]["stackRewardScale"],
}
# Controller type
self.control_type = self.cfg["env"]["controlType"]
assert self.control_type in {"osc", "joint_tor"},\
"Invalid control type specified. Must be one of: {osc, joint_tor}"
# dimensions
# obs include: cubeA_pose (7) + cubeB_pos (3) + eef_pose (7) + q_gripper (2)
self.cfg["env"]["numObservations"] = 19 if self.control_type == "osc" else 26
# actions include: delta EEF if OSC (6) or joint torques (7) + bool gripper (1)
self.cfg["env"]["numActions"] = 7 if self.control_type == "osc" else 8
# Values to be filled in at runtime
self.states = {} # will be dict filled with relevant states to use for reward calculation
self.handles = {} # will be dict mapping names to relevant sim handles
self.num_dofs = None # Total number of DOFs per env
self.actions = None # Current actions to be deployed
self._init_cubeA_state = None # Initial state of cubeA for the current env
self._init_cubeB_state = None # Initial state of cubeB for the current env
self._cubeA_state = None # Current state of cubeA for the current env
self._cubeB_state = None # Current state of cubeB for the current env
self._cubeA_id = None # Actor ID corresponding to cubeA for a given env
self._cubeB_id = None # Actor ID corresponding to cubeB for a given env
# Tensor placeholders
self._root_state = None # State of root body (n_envs, 13)
self._dof_state = None # State of all joints (n_envs, n_dof)
self._q = None # Joint positions (n_envs, n_dof)
self._qd = None # Joint velocities (n_envs, n_dof)
self._rigid_body_state = None # State of all rigid bodies (n_envs, n_bodies, 13)
self._contact_forces = None # Contact forces in sim
self._eef_state = None # end effector state (at grasping point)
self._eef_lf_state = None # end effector state (at left fingertip)
self._eef_rf_state = None # end effector state (at left fingertip)
self._j_eef = None # Jacobian for end effector
self._mm = None # Mass matrix
self._arm_control = None # Tensor buffer for controlling arm
self._gripper_control = None # Tensor buffer for controlling gripper
self._pos_control = None # Position actions
self._effort_control = None # Torque actions
self._franka_effort_limits = None # Actuator effort limits for franka
self._global_indices = None # Unique indices corresponding to all envs in flattened array
self.debug_viz = self.cfg["env"]["enableDebugVis"]
self.up_axis = "z"
self.up_axis_idx = 2
super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render)
# Franka defaults
self.franka_default_dof_pos = to_torch(
[0, 0.1963, 0, -2.6180, 0, 2.9416, 0.7854, 0.035, 0.035], device=self.device
)
# OSC Gains
self.kp = to_torch([150.] * 6, device=self.device)
self.kd = 2 * torch.sqrt(self.kp)
self.kp_null = to_torch([10.] * 7, device=self.device)
self.kd_null = 2 * torch.sqrt(self.kp_null)
#self.cmd_limit = None # filled in later
# Set control limits
self.cmd_limit = to_torch([0.1, 0.1, 0.1, 0.5, 0.5, 0.5], device=self.device).unsqueeze(0) if \
self.control_type == "osc" else self._franka_effort_limits[:7].unsqueeze(0)
# Reset all environments
self.reset_idx(torch.arange(self.num_envs, device=self.device))
# Refresh tensors
self._refresh()
def create_sim(self):
self.sim_params.up_axis = gymapi.UP_AXIS_Z
self.sim_params.gravity.x = 0
self.sim_params.gravity.y = 0
self.sim_params.gravity.z = -9.81
self.sim = super().create_sim(
self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params)
self._create_ground_plane()
self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs)))
def _create_ground_plane(self):
plane_params = gymapi.PlaneParams()
plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0)
self.gym.add_ground(self.sim, plane_params)
def _create_envs(self, num_envs, spacing, num_per_row):
lower = gymapi.Vec3(-spacing, -spacing, 0.0)
upper = gymapi.Vec3(spacing, spacing, spacing)
asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../assets")
franka_asset_file = "urdf/franka_description/robots/franka_panda_gripper.urdf"
if "asset" in self.cfg["env"]:
asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), self.cfg["env"]["asset"].get("assetRoot", asset_root))
franka_asset_file = self.cfg["env"]["asset"].get("assetFileNameFranka", franka_asset_file)
# load franka asset
asset_options = gymapi.AssetOptions()
asset_options.flip_visual_attachments = True
asset_options.fix_base_link = True
asset_options.collapse_fixed_joints = False
asset_options.disable_gravity = True
asset_options.thickness = 0.001
asset_options.default_dof_drive_mode = gymapi.DOF_MODE_EFFORT
asset_options.use_mesh_materials = True
franka_asset = self.gym.load_asset(self.sim, asset_root, franka_asset_file, asset_options)
franka_dof_stiffness = to_torch([0, 0, 0, 0, 0, 0, 0, 5000., 5000.], dtype=torch.float, device=self.device)
franka_dof_damping = to_torch([0, 0, 0, 0, 0, 0, 0, 1.0e2, 1.0e2], dtype=torch.float, device=self.device)
# Create table asset
table_pos = [0.0, 0.0, 1.0]
table_thickness = 0.05
table_opts = gymapi.AssetOptions()
table_opts.fix_base_link = True
table_asset = self.gym.create_box(self.sim, *[1.2, 1.2, table_thickness], table_opts)
# Create table stand asset
table_stand_height = 0.1
table_stand_pos = [-0.5, 0.0, 1.0 + table_thickness / 2 + table_stand_height / 2]
table_stand_opts = gymapi.AssetOptions()
table_stand_opts.fix_base_link = True
table_stand_asset = self.gym.create_box(self.sim, *[0.2, 0.2, table_stand_height], table_opts)
self.cubeA_size = 0.050
self.cubeB_size = 0.070
# Create cubeA asset
cubeA_opts = gymapi.AssetOptions()
cubeA_asset = self.gym.create_box(self.sim, *([self.cubeA_size] * 3), cubeA_opts)
cubeA_color = gymapi.Vec3(0.6, 0.1, 0.0)
# Create cubeB asset
cubeB_opts = gymapi.AssetOptions()
cubeB_asset = self.gym.create_box(self.sim, *([self.cubeB_size] * 3), cubeB_opts)
cubeB_color = gymapi.Vec3(0.0, 0.4, 0.1)
self.num_franka_bodies = self.gym.get_asset_rigid_body_count(franka_asset)
self.num_franka_dofs = self.gym.get_asset_dof_count(franka_asset)
print("num franka bodies: ", self.num_franka_bodies)
print("num franka dofs: ", self.num_franka_dofs)
# set franka dof properties
franka_dof_props = self.gym.get_asset_dof_properties(franka_asset)
self.franka_dof_lower_limits = []
self.franka_dof_upper_limits = []
self._franka_effort_limits = []
for i in range(self.num_franka_dofs):
franka_dof_props['driveMode'][i] = gymapi.DOF_MODE_POS if i > 6 else gymapi.DOF_MODE_EFFORT
if self.physics_engine == gymapi.SIM_PHYSX:
franka_dof_props['stiffness'][i] = franka_dof_stiffness[i]
franka_dof_props['damping'][i] = franka_dof_damping[i]
else:
franka_dof_props['stiffness'][i] = 7000.0
franka_dof_props['damping'][i] = 50.0
self.franka_dof_lower_limits.append(franka_dof_props['lower'][i])
self.franka_dof_upper_limits.append(franka_dof_props['upper'][i])
self._franka_effort_limits.append(franka_dof_props['effort'][i])
self.franka_dof_lower_limits = to_torch(self.franka_dof_lower_limits, device=self.device)
self.franka_dof_upper_limits = to_torch(self.franka_dof_upper_limits, device=self.device)
self._franka_effort_limits = to_torch(self._franka_effort_limits, device=self.device)
self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits)
self.franka_dof_speed_scales[[7, 8]] = 0.1
franka_dof_props['effort'][7] = 200
franka_dof_props['effort'][8] = 200
# Define start pose for franka
franka_start_pose = gymapi.Transform()
franka_start_pose.p = gymapi.Vec3(-0.45, 0.0, 1.0 + table_thickness / 2 + table_stand_height)
franka_start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0)
# Define start pose for table
table_start_pose = gymapi.Transform()
table_start_pose.p = gymapi.Vec3(*table_pos)
table_start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0)
self._table_surface_pos = np.array(table_pos) + np.array([0, 0, table_thickness / 2])
self.reward_settings["table_height"] = self._table_surface_pos[2]
# Define start pose for table stand
table_stand_start_pose = gymapi.Transform()
table_stand_start_pose.p = gymapi.Vec3(*table_stand_pos)
table_stand_start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0)
# Define start pose for cubes (doesn't really matter since they're get overridden during reset() anyways)
cubeA_start_pose = gymapi.Transform()
cubeA_start_pose.p = gymapi.Vec3(-1.0, 0.0, 0.0)
cubeA_start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0)
cubeB_start_pose = gymapi.Transform()
cubeB_start_pose.p = gymapi.Vec3(1.0, 0.0, 0.0)
cubeB_start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0)
# compute aggregate size
num_franka_bodies = self.gym.get_asset_rigid_body_count(franka_asset)
num_franka_shapes = self.gym.get_asset_rigid_shape_count(franka_asset)
max_agg_bodies = num_franka_bodies + 4 # 1 for table, table stand, cubeA, cubeB
max_agg_shapes = num_franka_shapes + 4 # 1 for table, table stand, cubeA, cubeB
self.frankas = []
self.envs = []
# Create environments
for i in range(self.num_envs):
# create env instance
env_ptr = self.gym.create_env(self.sim, lower, upper, num_per_row)
# Create actors and define aggregate group appropriately depending on setting
# NOTE: franka should ALWAYS be loaded first in sim!
if self.aggregate_mode >= 3:
self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True)
# Create franka
# Potentially randomize start pose
if self.franka_position_noise > 0:
rand_xy = self.franka_position_noise * (-1. + np.random.rand(2) * 2.0)
franka_start_pose.p = gymapi.Vec3(-0.45 + rand_xy[0], 0.0 + rand_xy[1],
1.0 + table_thickness / 2 + table_stand_height)
if self.franka_rotation_noise > 0:
rand_rot = torch.zeros(1, 3)
rand_rot[:, -1] = self.franka_rotation_noise * (-1. + np.random.rand() * 2.0)
new_quat = axisangle2quat(rand_rot).squeeze().numpy().tolist()
franka_start_pose.r = gymapi.Quat(*new_quat)
franka_actor = self.gym.create_actor(env_ptr, franka_asset, franka_start_pose, "franka", i, 0, 0)
self.gym.set_actor_dof_properties(env_ptr, franka_actor, franka_dof_props)
if self.aggregate_mode == 2:
self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True)
# Create table
table_actor = self.gym.create_actor(env_ptr, table_asset, table_start_pose, "table", i, 1, 0)
table_stand_actor = self.gym.create_actor(env_ptr, table_stand_asset, table_stand_start_pose, "table_stand",
i, 1, 0)
if self.aggregate_mode == 1:
self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True)
# Create cubes
self._cubeA_id = self.gym.create_actor(env_ptr, cubeA_asset, cubeA_start_pose, "cubeA", i, 2, 0)
self._cubeB_id = self.gym.create_actor(env_ptr, cubeB_asset, cubeB_start_pose, "cubeB", i, 4, 0)
# Set colors
self.gym.set_rigid_body_color(env_ptr, self._cubeA_id, 0, gymapi.MESH_VISUAL, cubeA_color)
self.gym.set_rigid_body_color(env_ptr, self._cubeB_id, 0, gymapi.MESH_VISUAL, cubeB_color)
if self.aggregate_mode > 0:
self.gym.end_aggregate(env_ptr)
# Store the created env pointers
self.envs.append(env_ptr)
self.frankas.append(franka_actor)
# Setup init state buffer
self._init_cubeA_state = torch.zeros(self.num_envs, 13, device=self.device)
self._init_cubeB_state = torch.zeros(self.num_envs, 13, device=self.device)
# Setup data
self.init_data()
def init_data(self):
# Setup sim handles
env_ptr = self.envs[0]
franka_handle = 0
self.handles = {
# Franka
"hand": self.gym.find_actor_rigid_body_handle(env_ptr, franka_handle, "panda_hand"),
"leftfinger_tip": self.gym.find_actor_rigid_body_handle(env_ptr, franka_handle, "panda_leftfinger_tip"),
"rightfinger_tip": self.gym.find_actor_rigid_body_handle(env_ptr, franka_handle, "panda_rightfinger_tip"),
"grip_site": self.gym.find_actor_rigid_body_handle(env_ptr, franka_handle, "panda_grip_site"),
# Cubes
"cubeA_body_handle": self.gym.find_actor_rigid_body_handle(self.envs[0], self._cubeA_id, "box"),
"cubeB_body_handle": self.gym.find_actor_rigid_body_handle(self.envs[0], self._cubeB_id, "box"),
}
# Get total DOFs
self.num_dofs = self.gym.get_sim_dof_count(self.sim) // self.num_envs
# Setup tensor buffers
_actor_root_state_tensor = self.gym.acquire_actor_root_state_tensor(self.sim)
_dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim)
_rigid_body_state_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim)
self._root_state = gymtorch.wrap_tensor(_actor_root_state_tensor).view(self.num_envs, -1, 13)
self._dof_state = gymtorch.wrap_tensor(_dof_state_tensor).view(self.num_envs, -1, 2)
self._rigid_body_state = gymtorch.wrap_tensor(_rigid_body_state_tensor).view(self.num_envs, -1, 13)
self._q = self._dof_state[..., 0]
self._qd = self._dof_state[..., 1]
self._eef_state = self._rigid_body_state[:, self.handles["grip_site"], :]
self._eef_lf_state = self._rigid_body_state[:, self.handles["leftfinger_tip"], :]
self._eef_rf_state = self._rigid_body_state[:, self.handles["rightfinger_tip"], :]
_jacobian = self.gym.acquire_jacobian_tensor(self.sim, "franka")
jacobian = gymtorch.wrap_tensor(_jacobian)
hand_joint_index = self.gym.get_actor_joint_dict(env_ptr, franka_handle)['panda_hand_joint']
self._j_eef = jacobian[:, hand_joint_index, :, :7]
_massmatrix = self.gym.acquire_mass_matrix_tensor(self.sim, "franka")
mm = gymtorch.wrap_tensor(_massmatrix)
self._mm = mm[:, :7, :7]
self._cubeA_state = self._root_state[:, self._cubeA_id, :]
self._cubeB_state = self._root_state[:, self._cubeB_id, :]
# Initialize states
self.states.update({
"cubeA_size": torch.ones_like(self._eef_state[:, 0]) * self.cubeA_size,
"cubeB_size": torch.ones_like(self._eef_state[:, 0]) * self.cubeB_size,
})
# Initialize actions
self._pos_control = torch.zeros((self.num_envs, self.num_dofs), dtype=torch.float, device=self.device)
self._effort_control = torch.zeros_like(self._pos_control)
# Initialize control
self._arm_control = self._effort_control[:, :7]
self._gripper_control = self._pos_control[:, 7:9]
# Initialize indices
self._global_indices = torch.arange(self.num_envs * 5, dtype=torch.int32,
device=self.device).view(self.num_envs, -1)
def _update_states(self):
self.states.update({
# Franka
"q": self._q[:, :],
"q_gripper": self._q[:, -2:],
"eef_pos": self._eef_state[:, :3],
"eef_quat": self._eef_state[:, 3:7],
"eef_vel": self._eef_state[:, 7:],
"eef_lf_pos": self._eef_lf_state[:, :3],
"eef_rf_pos": self._eef_rf_state[:, :3],
# Cubes
"cubeA_quat": self._cubeA_state[:, 3:7],
"cubeA_pos": self._cubeA_state[:, :3],
"cubeA_pos_relative": self._cubeA_state[:, :3] - self._eef_state[:, :3],
"cubeB_quat": self._cubeB_state[:, 3:7],
"cubeB_pos": self._cubeB_state[:, :3],
"cubeA_to_cubeB_pos": self._cubeB_state[:, :3] - self._cubeA_state[:, :3],
})
def _refresh(self):
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_rigid_body_state_tensor(self.sim)
self.gym.refresh_jacobian_tensors(self.sim)
self.gym.refresh_mass_matrix_tensors(self.sim)
# Refresh states
self._update_states()
def compute_reward(self, actions):
self.rew_buf[:], self.reset_buf[:] = compute_franka_reward(
self.reset_buf, self.progress_buf, self.actions, self.states, self.reward_settings, self.max_episode_length
)
def compute_observations(self):
self._refresh()
obs = ["cubeA_quat", "cubeA_pos", "cubeA_to_cubeB_pos", "eef_pos", "eef_quat"]
obs += ["q_gripper"] if self.control_type == "osc" else ["q"]
self.obs_buf = torch.cat([self.states[ob] for ob in obs], dim=-1)
maxs = {ob: torch.max(self.states[ob]).item() for ob in obs}
return self.obs_buf
def reset_idx(self, env_ids):
env_ids_int32 = env_ids.to(dtype=torch.int32)
# Reset cubes, sampling cube B first, then A
# if not self._i:
self._reset_init_cube_state(cube='B', env_ids=env_ids, check_valid=False)
self._reset_init_cube_state(cube='A', env_ids=env_ids, check_valid=True)
# self._i = True
# Write these new init states to the sim states
self._cubeA_state[env_ids] = self._init_cubeA_state[env_ids]
self._cubeB_state[env_ids] = self._init_cubeB_state[env_ids]
# Reset agent
reset_noise = torch.rand((len(env_ids), 9), device=self.device)
pos = tensor_clamp(
self.franka_default_dof_pos.unsqueeze(0) +
self.franka_dof_noise * 2.0 * (reset_noise - 0.5),
self.franka_dof_lower_limits.unsqueeze(0), self.franka_dof_upper_limits)
# Overwrite gripper init pos (no noise since these are always position controlled)
pos[:, -2:] = self.franka_default_dof_pos[-2:]
# Reset the internal obs accordingly
self._q[env_ids, :] = pos
self._qd[env_ids, :] = torch.zeros_like(self._qd[env_ids])
# Set any position control to the current position, and any vel / effort control to be 0
# NOTE: Task takes care of actually propagating these controls in sim using the SimActions API
self._pos_control[env_ids, :] = pos
self._effort_control[env_ids, :] = torch.zeros_like(pos)
# Deploy updates
multi_env_ids_int32 = self._global_indices[env_ids, 0].flatten()
self.gym.set_dof_position_target_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self._pos_control),
gymtorch.unwrap_tensor(multi_env_ids_int32),
len(multi_env_ids_int32))
self.gym.set_dof_actuation_force_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self._effort_control),
gymtorch.unwrap_tensor(multi_env_ids_int32),
len(multi_env_ids_int32))
self.gym.set_dof_state_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self._dof_state),
gymtorch.unwrap_tensor(multi_env_ids_int32),
len(multi_env_ids_int32))
# Update cube states
multi_env_ids_cubes_int32 = self._global_indices[env_ids, -2:].flatten()
self.gym.set_actor_root_state_tensor_indexed(
self.sim, gymtorch.unwrap_tensor(self._root_state),
gymtorch.unwrap_tensor(multi_env_ids_cubes_int32), len(multi_env_ids_cubes_int32))
self.progress_buf[env_ids] = 0
self.reset_buf[env_ids] = 0
def _reset_init_cube_state(self, cube, env_ids, check_valid=True):
"""
Simple method to sample @cube's position based on self.startPositionNoise and self.startRotationNoise, and
automaticlly reset the pose internally. Populates the appropriate self._init_cubeX_state
If @check_valid is True, then this will also make sure that the sampled position is not in contact with the
other cube.
Args:
cube(str): Which cube to sample location for. Either 'A' or 'B'
env_ids (tensor or None): Specific environments to reset cube for
check_valid (bool): Whether to make sure sampled position is collision-free with the other cube.
"""
# If env_ids is None, we reset all the envs
if env_ids is None:
env_ids = torch.arange(start=0, end=self.num_envs, device=self.device, dtype=torch.long)
# Initialize buffer to hold sampled values
num_resets = len(env_ids)
sampled_cube_state = torch.zeros(num_resets, 13, device=self.device)
# Get correct references depending on which one was selected
if cube.lower() == 'a':
this_cube_state_all = self._init_cubeA_state
other_cube_state = self._init_cubeB_state[env_ids, :]
cube_heights = self.states["cubeA_size"]
elif cube.lower() == 'b':
this_cube_state_all = self._init_cubeB_state
other_cube_state = self._init_cubeA_state[env_ids, :]
cube_heights = self.states["cubeA_size"]
else:
raise ValueError(f"Invalid cube specified, options are 'A' and 'B'; got: {cube}")
# Minimum cube distance for guarenteed collision-free sampling is the sum of each cube's effective radius
min_dists = (self.states["cubeA_size"] + self.states["cubeB_size"])[env_ids] * np.sqrt(2) / 2.0
# We scale the min dist by 2 so that the cubes aren't too close together
min_dists = min_dists * 2.0
# Sampling is "centered" around middle of table
centered_cube_xy_state = torch.tensor(self._table_surface_pos[:2], device=self.device, dtype=torch.float32)
# Set z value, which is fixed height
sampled_cube_state[:, 2] = self._table_surface_pos[2] + cube_heights.squeeze(-1)[env_ids] / 2
# Initialize rotation, which is no rotation (quat w = 1)
sampled_cube_state[:, 6] = 1.0
# If we're verifying valid sampling, we need to check and re-sample if any are not collision-free
# We use a simple heuristic of checking based on cubes' radius to determine if a collision would occur
if check_valid:
success = False
# Indexes corresponding to envs we're still actively sampling for
active_idx = torch.arange(num_resets, device=self.device)
num_active_idx = len(active_idx)
for i in range(100):
# Sample x y values
sampled_cube_state[active_idx, :2] = centered_cube_xy_state + \
2.0 * self.start_position_noise * (
torch.rand_like(sampled_cube_state[active_idx, :2]) - 0.5)
# Check if sampled values are valid
cube_dist = torch.linalg.norm(sampled_cube_state[:, :2] - other_cube_state[:, :2], dim=-1)
active_idx = torch.nonzero(cube_dist < min_dists, as_tuple=True)[0]
num_active_idx = len(active_idx)
# If active idx is empty, then all sampling is valid :D
if num_active_idx == 0:
success = True
break
# Make sure we succeeded at sampling
assert success, "Sampling cube locations was unsuccessful! ):"
else:
# We just directly sample
sampled_cube_state[:, :2] = centered_cube_xy_state.unsqueeze(0) + \
2.0 * self.start_position_noise * (
torch.rand(num_resets, 2, device=self.device) - 0.5)
# Sample rotation value
if self.start_rotation_noise > 0:
aa_rot = torch.zeros(num_resets, 3, device=self.device)
aa_rot[:, 2] = 2.0 * self.start_rotation_noise * (torch.rand(num_resets, device=self.device) - 0.5)
sampled_cube_state[:, 3:7] = quat_mul(axisangle2quat(aa_rot), sampled_cube_state[:, 3:7])
# Lastly, set these sampled values as the new init state
this_cube_state_all[env_ids, :] = sampled_cube_state
def _compute_osc_torques(self, dpose):
# Solve for Operational Space Control # Paper: khatib.stanford.edu/publications/pdfs/Khatib_1987_RA.pdf
# Helpful resource: studywolf.wordpress.com/2013/09/17/robot-control-4-operation-space-control/
q, qd = self._q[:, :7], self._qd[:, :7]
mm_inv = torch.inverse(self._mm)
m_eef_inv = self._j_eef @ mm_inv @ torch.transpose(self._j_eef, 1, 2)
m_eef = torch.inverse(m_eef_inv)
# Transform our cartesian action `dpose` into joint torques `u`
u = torch.transpose(self._j_eef, 1, 2) @ m_eef @ (
self.kp * dpose - self.kd * self.states["eef_vel"]).unsqueeze(-1)
# Nullspace control torques `u_null` prevents large changes in joint configuration
# They are added into the nullspace of OSC so that the end effector orientation remains constant
# roboticsproceedings.org/rss07/p31.pdf
j_eef_inv = m_eef @ self._j_eef @ mm_inv
u_null = self.kd_null * -qd + self.kp_null * (
(self.franka_default_dof_pos[:7] - q + np.pi) % (2 * np.pi) - np.pi)
u_null[:, 7:] *= 0
u_null = self._mm @ u_null.unsqueeze(-1)
u += (torch.eye(7, device=self.device).unsqueeze(0) - torch.transpose(self._j_eef, 1, 2) @ j_eef_inv) @ u_null
# Clip the values to be within valid effort range
u = tensor_clamp(u.squeeze(-1),
-self._franka_effort_limits[:7].unsqueeze(0), self._franka_effort_limits[:7].unsqueeze(0))
return u
def pre_physics_step(self, actions):
self.actions = actions.clone().to(self.device)
# Split arm and gripper command
u_arm, u_gripper = self.actions[:, :-1], self.actions[:, -1]
# print(u_arm, u_gripper)
# print(self.cmd_limit, self.action_scale)
# Control arm (scale value first)
u_arm = u_arm * self.cmd_limit / self.action_scale
if self.control_type == "osc":
u_arm = self._compute_osc_torques(dpose=u_arm)
self._arm_control[:, :] = u_arm
# Control gripper
u_fingers = torch.zeros_like(self._gripper_control)
u_fingers[:, 0] = torch.where(u_gripper >= 0.0, self.franka_dof_upper_limits[-2].item(),
self.franka_dof_lower_limits[-2].item())
u_fingers[:, 1] = torch.where(u_gripper >= 0.0, self.franka_dof_upper_limits[-1].item(),
self.franka_dof_lower_limits[-1].item())
# Write gripper command to appropriate tensor buffer
self._gripper_control[:, :] = u_fingers
# Deploy actions
self.gym.set_dof_position_target_tensor(self.sim, gymtorch.unwrap_tensor(self._pos_control))
self.gym.set_dof_actuation_force_tensor(self.sim, gymtorch.unwrap_tensor(self._effort_control))
def post_physics_step(self):
self.progress_buf += 1
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.compute_observations()
self.compute_reward(self.actions)
# debug viz
if self.viewer and self.debug_viz:
self.gym.clear_lines(self.viewer)
self.gym.refresh_rigid_body_state_tensor(self.sim)
# Grab relevant states to visualize
eef_pos = self.states["eef_pos"]
eef_rot = self.states["eef_quat"]
cubeA_pos = self.states["cubeA_pos"]
cubeA_rot = self.states["cubeA_quat"]
cubeB_pos = self.states["cubeB_pos"]
cubeB_rot = self.states["cubeB_quat"]
# Plot visualizations
for i in range(self.num_envs):
for pos, rot in zip((eef_pos, cubeA_pos, cubeB_pos), (eef_rot, cubeA_rot, cubeB_rot)):
px = (pos[i] + quat_apply(rot[i], to_torch([1, 0, 0], device=self.device) * 0.2)).cpu().numpy()
py = (pos[i] + quat_apply(rot[i], to_torch([0, 1, 0], device=self.device) * 0.2)).cpu().numpy()
pz = (pos[i] + quat_apply(rot[i], to_torch([0, 0, 1], device=self.device) * 0.2)).cpu().numpy()
p0 = pos[i].cpu().numpy()
self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], px[0], px[1], px[2]], [0.85, 0.1, 0.1])
self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], py[0], py[1], py[2]], [0.1, 0.85, 0.1])
self.gym.add_lines(self.viewer, self.envs[i], 1, [p0[0], p0[1], p0[2], pz[0], pz[1], pz[2]], [0.1, 0.1, 0.85])
#####################################################################
###=========================jit functions=========================###
#####################################################################
@torch.jit.script
def compute_franka_reward(
reset_buf, progress_buf, actions, states, reward_settings, max_episode_length
):
# type: (Tensor, Tensor, Tensor, Dict[str, Tensor], Dict[str, float], float) -> Tuple[Tensor, Tensor]
# Compute per-env physical parameters
target_height = states["cubeB_size"] + states["cubeA_size"] / 2.0
cubeA_size = states["cubeA_size"]
cubeB_size = states["cubeB_size"]
# distance from hand to the cubeA
d = torch.norm(states["cubeA_pos_relative"], dim=-1)
d_lf = torch.norm(states["cubeA_pos"] - states["eef_lf_pos"], dim=-1)
d_rf = torch.norm(states["cubeA_pos"] - states["eef_rf_pos"], dim=-1)
dist_reward = 1 - torch.tanh(10.0 * (d + d_lf + d_rf) / 3)
# reward for lifting cubeA
cubeA_height = states["cubeA_pos"][:, 2] - reward_settings["table_height"]
cubeA_lifted = (cubeA_height - cubeA_size) > 0.04
lift_reward = cubeA_lifted
# how closely aligned cubeA is to cubeB (only provided if cubeA is lifted)
offset = torch.zeros_like(states["cubeA_to_cubeB_pos"])
offset[:, 2] = (cubeA_size + cubeB_size) / 2
d_ab = torch.norm(states["cubeA_to_cubeB_pos"] + offset, dim=-1)
align_reward = (1 - torch.tanh(10.0 * d_ab)) * cubeA_lifted
# Dist reward is maximum of dist and align reward
dist_reward = torch.max(dist_reward, align_reward)
# final reward for stacking successfully (only if cubeA is close to target height and corresponding location, and gripper is not grasping)
cubeA_align_cubeB = (torch.norm(states["cubeA_to_cubeB_pos"][:, :2], dim=-1) < 0.02)
cubeA_on_cubeB = torch.abs(cubeA_height - target_height) < 0.02
gripper_away_from_cubeA = (d > 0.04)
stack_reward = cubeA_align_cubeB & cubeA_on_cubeB & gripper_away_from_cubeA
# Compose rewards
# We either provide the stack reward or the align + dist reward
rewards = torch.where(
stack_reward,
reward_settings["r_stack_scale"] * stack_reward,
reward_settings["r_dist_scale"] * dist_reward + reward_settings["r_lift_scale"] * lift_reward + reward_settings[
"r_align_scale"] * align_reward,
)
# Compute resets
reset_buf = torch.where((progress_buf >= max_episode_length - 1) | (stack_reward > 0), torch.ones_like(reset_buf), reset_buf)
return rewards, reset_buf