-
Notifications
You must be signed in to change notification settings - Fork 10
/
autoplait.py
576 lines (528 loc) · 17.4 KB
/
autoplait.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
import time
from copy import deepcopy
from itertools import combinations
from warnings import filterwarnings
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import pprint
from sklearn.preprocessing import scale
from hmmlearn.hmm import GaussianHMM
from tqdm import tqdm
from joblib import Parallel, delayed
filterwarnings('ignore')
cmap = cm.Set1
pp = pprint.PrettyPrinter(indent=4)
parallel = True
ZERO = 1.e-10
INF = 1.e+10
MINK = 1
MAXK = 8
MAXSEG = 100
N_INFER_ITER_HMM = 1
INFER_ITER_MIN = 2
INFER_ITER_MAX = 10
SEGMENT_R = 1.e-2
REGIME_R = 3.e-2
BIAS = 1.e+5
MAXBAUMN = 3
FB = 4 * 8
LM = .1
RM = True
NSAMPLE = 10
class AutoPlait(object):
def __init__(self):
self.costT = np.inf
self.regimes = []
def solver(self, X):
self.X = X
self.n, self.d = _shape(X)
reg = Regime()
reg.add_segment(0, self.n)
_estimate_hmm(X, reg)
candidates = [reg]
while True:
self.costT = _mdl_total(self.regimes, candidates)
reg = candidates.pop()
# try to split regime: s0, s1
reg0, reg1 = regime_split(X, reg)
# print(reg0.subs[:reg0.n_seg], '0')
# print(reg1.subs[:reg1.n_seg], '1')
costT_s01 = reg0.costT + reg1.costT + REGIME_R * reg.costT
print(f'\t-- try to split: {costT_s01:.6} vs {reg.costT:.6}')
# print(s0.costT, s1.costT)
if costT_s01 < reg.costT:
candidates.append(reg0)
candidates.append(reg1)
else:
self.regimes.append(reg)
if not candidates:
break
def save(self):
plt.subplot(211)
plt.plot(self.X)
plt.ylabel('Value')
plt.subplot(212)
for r in range(len(self.regimes)):
print(self.regimes[r].subs[:self.regimes[r].n_seg], r)
for i in range(self.regimes[r].n_seg):
st, dt = self.regimes[r].subs[i]
plt.plot([st, st + dt - 1], [r, r], color=cmap(r))
plt.xlabel('Time')
plt.ylabel('Regime ID')
plt.tight_layout()
plt.savefig('./result.png')
plt.close()
def _mdl_total(stack0, stack1):
r = len(stack0) + len(stack1)
m = sum([regime.n_seg for regime in stack0])
m += sum([regime.n_seg for regime in stack1])
costT = MDLsegment(stack0) + MDLsegment(stack1)
costT += log_s(r) + log_s(m) + m * np.log2(r) + FB * r ** 2
# print(f'[r, m, total_cost] = {r}, {m}, {costT:.6}')
print('====================')
print(' r:\t', r)
print(' m:\t', m)
print(f' costT:\t{costT:.6}')
print('====================')
return costT
def regime_split(X, sx):
opt0, opt1 = Regime(), Regime()
n, d = _shape(X)
seedlen = int(n * LM)
s0, s1 = _find_centroid(X, sx, NSAMPLE, seedlen)
if not s0.n_seg or not s1.n_seg:
return opt0, opt1
for i in range(INFER_ITER_MAX):
select_largest(s0)
select_largest(s1)
_estimate_hmm(X, s0)
_estimate_hmm(X, s1)
cut_point_search(X, sx, s0, s1, RM=RM)
if not s0.n_seg or not s1.n_seg:
break
diff = (opt0.costT + opt1.costT) - (s0.costT + s1.costT)
if diff > 0:
copy_segments(s0, opt0)
copy_segments(s1, opt1)
elif i >= INFER_ITER_MIN:
break
copy_segments(opt0, s0)
copy_segments(opt1, s1)
del opt0, opt1
if not s0.n_seg or not s1.n_seg:
return s0, s1
_estimate_hmm(X, s0)
_estimate_hmm(X, s1)
return s0, s1
def _search_aux(X, st, dt, s0, s1):
d0, d1 = s0.delta, s1.delta
if d0 <= 0 or d1 <= 0: error('delta is zero.')
m0, m1 = s0.model, s1.model
k0, k1 = m0.n_components, m1.n_components
Pu, Pv = np.zeros(k0), np.zeros(k0) # log probability
Pi, Pj = np.zeros(k1), np.zeros(k1) # log probability
Su, Sv = [[] for _ in range(k0)], [[] for _ in range(k0)]
Si, Sj = [[] for _ in range(k1)], [[] for _ in range(k1)]
t = st
Pv = np.log(d1) + np.log(m0.startprob_ + ZERO)
for v in range(k0):
Pv[v] += gaussian_pdfl(X[t], m0.means_[v], m0.covars_[v])
Pj = np.log(d0) + np.log(m1.startprob_ + ZERO)
for j in range(k1):
Pj[j] += gaussian_pdfl(X[t], m1.means_[j], m1.covars_[j])
for t in range(st + 1, st + dt):
# Pu(t)
maxj = np.argmax(Pj)
for u in range(k0):
maxPj = Pj[maxj] + np.log(d1) + np.log(m0.startprob_[u] + ZERO) + gaussian_pdfl(X[t], m0.means_[u], m0.covars_[u])
val = Pv + np.log(1. - d0) + np.log(m0.transmat_[:, u] + ZERO)
for v in range(k0):
val[v] += gaussian_pdfl(X[t], m0.means_[u], m0.covars_[u])
maxPv, maxv = np.max(val), np.argmax(val)
if maxPj > maxPv:
Pu[u] = maxPj
Su[u] = deepcopy(Sj[maxj])
Su[u].append(t)
else:
Pu[u] = maxPv
Su[u] = deepcopy(Sv[maxv])
# Pj(t)
maxv = np.argmax(Pv)
for i in range(k1):
maxPv = Pv[maxv] + np.log(d0) + np.log(m1.startprob_[i] + ZERO) + gaussian_pdfl(X[t], m1.means_[i], m1.covars_[i])
val = Pj + np.log(1. - d1) + np.log(m1.transmat_[:, i] + ZERO)
for j in range(k1):
val[j] += gaussian_pdfl(X[t], m1.means_[i], m1.covars_[i])
maxPj, maxj = np.max(val), np.argmax(val)
if maxPv > maxPj:
Pi[i] = maxPv
Si[i] = deepcopy(Sv[maxv])
Si[i].append(t)
else:
Pi[i] = maxPj
Si[i] = deepcopy(Sj[maxj])
tmp = np.copy(Pu); Pu = np.copy(Pv); Pv = np.copy(tmp)
tmp = np.copy(Pi); Pi = np.copy(Pj); Pj = np.copy(tmp)
tmp = deepcopy(Su); Su = deepcopy(Sv); Sv = deepcopy(tmp)
tmp = deepcopy(Si); Si = deepcopy(Sj); Sj = deepcopy(tmp)
maxv = np.argmax(Pv)
maxj = np.argmax(Pj)
if Pv[maxv] > Pj[maxj]:
path = Sv[maxv]
firstID = pow(-1, len(path)) * 1
llh = Pv[maxv]
else:
path = Sj[maxj]
firstID = pow(-1, len(path)) * -1
llh = Pj[maxj]
curst = st
for i in range(len(path)):
nxtst = path[i]
if firstID * pow(-1, i) == 1:
s0.add_segment(curst, nxtst - curst)
else:
s1.add_segment(curst, nxtst - curst)
curst = nxtst
if firstID * pow(-1, len(path)) == 1:
s0.add_segment(curst, st + dt - curst)
else:
s1.add_segment(curst, st + dt - curst)
# print(path)
# print('s0', s0.subs[:s0.n_seg])
# print('s1', s1.subs[:s1.n_seg])
return -llh / np.log(2.) # data coding cost
def cut_point_search(X, sx, s0, s1, RM=True):
s0.initialize()
s1.initialize()
lh = 0.
for i in range(sx.n_seg):
lh += _search_aux(X, sx.subs[i, 0], sx.subs[i, 1], s0, s1)
if RM: remove_noise(X, sx, s0, s1)
_compute_lh_mdl(X, s0)
_compute_lh_mdl(X, s1)
return lh
def _mdl(regime):
m = regime.n_seg
k = regime.model.n_components
d = regime.model.n_features
costT = costLen = 0.
costC = regime.costC
costM = costHMM(k, d)
for i in range(m):
costLen += np.log2(regime.subs[i, 1])
costLen += m * np.log2(k)
return costC + costM + costLen
def _viterbi(X, hmm, delta):
if not 0 <= delta <= 1:
exit('not appropriate delta')
# print(hmm.startprob_)
llh = hmm.score(X) + np.log(delta) + np.log(1 - delta)
return -llh / np.log(2) # data coding cost
def _compute_lh_mdl(X, regime):
if regime.n_seg == 0:
regime.costT = regime.costC = np.inf
return
regime.costC = 0.
for i in range(regime.n_seg):
st, dt = regime.subs[i]
regime.costC += _viterbi(X[st:st+dt], regime.model, regime.delta)
regime.costT = _mdl(regime)
if regime.costT < 0:
regime.costT = np.inf # avoid overfitting
def _shape(X):
return X.shape if X.ndim > 1 else (len(X), 1)
def _parse_input(X, regime):
n_seg = regime.n_seg
if n_seg == 1:
st, dt = regime.subs[0]
return X[st:st+dt, :], [dt]
n_seg = MAXBAUMN if n_seg > MAXBAUMN else n_seg
subss = []
lengths = []
for st, dt in regime.subs[:n_seg]:
subss.append(X[st:st+dt, :])
lengths.append(dt)
subss = np.concatenate(subss)
return subss, lengths
def _estimate_hmm_k(X, regime, k=1):
X_, lengths = _parse_input(X, regime)
regime.model = GaussianHMM(n_components=k,
covariance_type='diag',
n_iter=N_INFER_ITER_HMM)
regime.model.fit(X_, lengths=lengths)
regime.delta = regime.n_seg / regime.len
def _estimate_hmm(X, regime):
regime.costT = np.inf
opt_k = MINK
for k in range(MINK, MAXK):
prev = regime.costT
_estimate_hmm_k(X, regime, k)
_compute_lh_mdl(X, regime)
if regime.costT > prev:
opt_k = k - 1
break
if opt_k < MINK: opt_k = MINK
if opt_k > MAXK: opt_k = MAXK
_estimate_hmm_k(X, regime, opt_k)
_compute_lh_mdl(X, regime)
class Regime(object):
def __init__(self):
self.subs = np.zeros((MAXSEG, 2), dtype=np.int16)
self.model = None
self.delta = 1.
self.initialize()
def initialize(self):
self.len = 0
self.n_seg = 0
self.costC = np.inf
self.costT = np.inf
def add_segment(self, st, dt):
if dt <= 0: return
st = 0 if st < 0 else st
n_seg = self.n_seg
if n_seg == MAXSEG:
raise ValueError(" ")
elif n_seg == 0:
self.subs[0, :] = (st, dt)
self.n_seg += 1
self.len = dt
self.delta = 1 / dt
else:
loc = 0
while loc < n_seg:
if st < self.subs[loc, 0]:
break
loc += 1
self.subs[loc+1:n_seg+1, :] = self.subs[loc:n_seg, :]
self.subs[loc, :] = (st, dt)
n_seg += 1
# remove overlap
curr = np.inf
while curr > n_seg:
curr = n_seg
for i in range(curr - 1):
st0, dt0 = self.subs[i]
st1, dt1 = self.subs[i + 1]
ed0, ed1 = (st0 + dt0), (st1 + dt1)
ed = ed0 if ed0 > ed1 else ed1
if ed0 > st1:
self.subs[i+1:-1, :] = self.subs[i+2:, :] # pop subs[i]
self.subs[i, 1] = ed - st0
n_seg -= 1
break
self.n_seg = n_seg
self.len = sum(self.subs[:n_seg, 1])
self.delta = self.n_seg / self.len
def add_segment_ex(self, st, dt):
self.subs[self.n_seg, :] = (st, dt)
self.n_seg += 1
self.len += dt
self.delta = self.n_seg / self.len
def del_segment(self, loc):
seg = self.subs[loc]
self.subs[loc:-1, :] = self.subs[loc+1:, :] # pop subs[i]
self.n_seg -= 1
self.len -= seg[1]
self.delta = self.n_seg / self.len if self.len > 0 else ZERO
return seg
def log_s(x):
return 2. * np.log2(x) + 1.
def costHMM(k, d):
return FB * (k + k ** 2 + 2 * k * d) + 2. * np.log(k) / np.log(2.) + 1.
def MDLsegment(stack):
return np.sum([regime.costT for regime in stack])
def gaussian_pdfl(x, means, covars):
n_dim = len(x)
covars = np.diag(covars)
lpr = -.5 * (n_dim * np.log(2 * np.pi) + np.sum(np.log(covars))
+ np.sum((means ** 2) / covars)
- 2 * np.dot(x, (means / covars).T)
+ np.dot(x ** 2, (1. / covars).T))
return lpr
def find_mindiff(X, s0, s1):
cost = np.inf
loc = -1
for i in range(s0.n_seg):
st, dt = s0.subs[i]
costC0 = _viterbi(X[st:st+dt], s0.model, s0.delta)
costC1 = _viterbi(X[st:st+dt], s1.model, s1.delta)
diff = abs(costC1 - costC0)
if cost > diff:
loc, cost = i, diff
return loc, cost
def scan_mindiff(X, Sx, s0, s1):
loc0, _ = find_mindiff(X, s0, s1)
loc1, _ = find_mindiff(X, s1, s0)
# print(s0.subs[loc0], s1.subs[loc1])
if (loc0 == -1 or loc1 == -1
or s0.subs[loc0, 1] < 2
or s1.subs[loc1, 1] < 2):
return np.inf
tmp0 = Regime()
tmp1 = Regime()
st, ln = s0.subs[loc0]
tmp0.add_segment(st, ln)
st, ln = s1.subs[loc1]
tmp1.add_segment(st, ln)
_estimate_hmm_k(X, tmp0, MINK)
_estimate_hmm_k(X, tmp1, MINK)
costC = cut_point_search(X, Sx, tmp0, tmp1, False)
del tmp0, tmp1
return costC
def remove_noise_aux(X, Sx, s0, s1, per):
if per == 0: return
th = per * Sx.costT
mprev = np.inf
while mprev > s0.n_seg + s1.n_seg:
mprev = s0.n_seg + s1.n_seg
loc0, diff0 = find_mindiff(X, s0, s1)
loc1, diff1 = find_mindiff(X, s1, s0)
cost, idx = (diff0, 0) if diff0 < diff1 else (diff1, 1)
if cost >= th:
continue
if idx == 0:
st, dt = s0.del_segment(loc0)
s1.add_segment(st, dt)
else:
st, dt = s1.del_segment(loc1)
s0.add_segment(st, dt)
def remove_noise(X, Sx, s0, s1):
if s0.n_seg <= 1 and s1.n_seg <= 1:
return
per = SEGMENT_R
remove_noise_aux(X, Sx, s0, s1, per)
costC = scan_mindiff(X, Sx, s0, s1)
opt0 = Regime()
opt1 = Regime()
copy_segments(s0, opt0)
copy_segments(s1, opt1)
prev = np.inf
while per <= SEGMENT_R * 10:
if costC >= np.inf:
break
per *= 2
remove_noise_aux(X, Sx, s0, s1, per)
if s0.n_seg <= 1 or s1.n_seg <= 1:
break
costC = scan_mindiff(X, Sx, s0, s1)
if prev > costC:
copy_segments(s0, opt0)
copy_segments(s1, opt1)
prev = costC
else:
break
copy_segments(opt0, s0)
copy_segments(opt1, s1)
# _estimate_hmm(X, s0)
# _estimate_hmm(X, s1)
del opt0, opt1
def copy_segments(s0, s1): # from s0 to s1
s1.subs = deepcopy(s0.subs)
s1.n_seg = s0.n_seg
s1.len = s0.len
s1.costT = s0.costT
s1.costC = s1.costC
s1.delta = s0.delta
def select_largest(s):
loc = np.argmax(s.subs[:, 1])
st, dt = s.subs[loc]
s.initialize()
s.add_segment(st, dt)
def uniformset(X, Sx, n_samples, seedlen):
u = Regime()
w = int((Sx.len - seedlen) / n_samples)
for i in range(Sx.n_seg):
if u.n_seg >= n_samples:
return u
st, ln = Sx.subs[i]
ed = st + ln
for j in range(n_samples):
nxt = st + j * w
if nxt + seedlen > ed:
st = ed - seedlen
if st < 0: st = 0
u.add_segment_ex(st, seedlen)
break
u.add_segment_ex(nxt, seedlen)
return u
def fixed_sampling(X, Sx, seedlen):
# print('nseg', Sx.n_seg)
s0, s1 = Regime(), Regime()
loc = 0 % Sx.n_seg
r = Sx.subs[loc, 0]
if Sx.n_seg == 1:
dt = Sx.subs[0, 1]
if dt < seedlen:
s0.add_segment(r, dt)
s1.add_segment(r, dt)
else:
s0.add_segment(r, dt)
s1.add_segment(r, dt)
s0.add_segment(r, seedlen)
loc = 1 % Sx.n_seg
r = Sx.subs[loc, 0] + int(Sx.subs[loc, 1] / 2)
s1.add_segment(r, seedlen)
return s0, s1
def uniform_sampling(X, Sx, length, n1, n2, u):
s0, s1 = Regime(), Regime()
i, j = int(n1 % u.n_seg), int(n2 % u.n_seg)
# print(i, j)
st0, st1 = u.subs[i, 0], u.subs[j, 0]
if abs(st0 - st1) < length:
return s0, s1
s0.add_segment(st0, length)
s1.add_segment(st1, length)
return s0, s1
def _find_centroid_wrap(X, Sx, seedlen, idx0, idx1, u):
s0, s1 = uniform_sampling(X, Sx, seedlen, idx0, idx1, u)
if not s0.n_seg or not s1.n_seg:
return np.inf, None, None
subs0 = s0.subs[0]
subs1 = s1.subs[0]
_estimate_hmm_k(X, s0, MINK)
_estimate_hmm_k(X, s1, MINK)
cut_point_search(X, Sx, s0, s1, False)
if not s0.n_seg or not s1.n_seg:
return np.inf, None, None
costT_s01 = s0.costT + s1.costT
return costT_s01, subs0, subs1
def _find_centroid(X, Sx, n_samples, seedlen):
u = uniformset(X, Sx, n_samples, seedlen)
# print(u.subs[:u.n_seg], u.n_seg)
if parallel is True:
results = Parallel(n_jobs=4)(
[delayed(_find_centroid_wrap)(X, Sx, seedlen, iter1, iter2, u)
for iter1, iter2 in combinations(range(u.n_seg), 2)])
else:
results = []
for iter1, iter2 in tqdm(combinations(range(u.n_seg), 2), desc='SearchCentroid'):
results.append(_find_centroid_wrap(X, Sx, seedlen, iter1, iter2, u))
# pp.pprint(results)
if not results:
print('fixed sampling')
s0, s1 = fixed_sampling(X, Sx, seedlen)
return s0, s1
centroid = np.argmin([res[0] for res in results])
# print(results[centroid])
costMin, seg0, seg1 = results[centroid]
if costMin == np.inf:
print('!! --- centroid not found')
# s0, s1 = fixed_sampling(X, Sx, seedlen)
# print('fixed_sampling', s0.subs, s1.subs)
return Regime(), Regime()
s0, s1 = Regime(), Regime()
s0.add_segment(seg0[0], seg0[1])
s1.add_segment(seg1[0], seg1[1])
# print(s0.n_seg, s1.n_seg)
# time.sleep(3)
return s0, s1
if __name__ == '__main__':
X = np.loadtxt('./_dat/21_01.amc.4d')
X = scale(X)
ap = AutoPlait()
start = time.time()
ap.solver(X)
elapsed_time = time.time() - start
print(f'===> elapsed time:{elapsed_time} [sec]')
ap.save()