-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIPL_Analysis.py
1066 lines (804 loc) · 52.6 KB
/
IPL_Analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
@author: Kshitij Singh
Description: Contains complete analysis of IPL 2008-2017
"""
# 1. Importing the library
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.offline as py
import plotly.graph_objs as go
import plotly.tools as tls
import os
import seaborn as sns
py.init_notebook_mode(connected=True)
plt.style.use('fivethirtyeight')
os.chdir(r"<--Directory Path-->") # For macOS
os.chdir(r"<--Directory Path-->") # For windows
# 2. Importing the datasets
matches = pd.read_csv('matches.csv')
delivery = pd.read_csv('deliveries.csv')
# 3. Cleaning the dataset
# Drop the upmire 3 column as it is mostly NaN
matches.drop(['umpire3'],
axis=1,
inplace=True)
# Replacing all NaN with 0
delivery.fillna(0, inplace=True)
# Replacing team names with abrevations
matches.replace(['Mumbai Indians','Kolkata Knight Riders','Royal Challengers Bangalore',
'Deccan Chargers','Chennai Super Kings','Rajasthan Royals','Delhi Daredevils',
'Gujarat Lions','Kings XI Punjab','Sunrisers Hyderabad','Rising Pune Supergiants',
'Kochi Tuskers Kerala','Pune Warriors','Rising Pune Supergiant'],
['MI','KKR','RCB','DC','CSK','RR','DD','GL','KXIP','SRH','RPS','KTK','PW',
'RPS'],
inplace=True)
delivery.replace(['Mumbai Indians','Kolkata Knight Riders','Royal Challengers Bangalore',
'Deccan Chargers','Chennai Super Kings','Rajasthan Royals','Delhi Daredevils',
'Gujarat Lions','Kings XI Punjab','Sunrisers Hyderabad','Rising Pune Supergiants',
'Kochi Tuskers Kerala','Pune Warriors','Rising Pune Supergiant'],
['MI','KKR','RCB','DC','CSK','RR','DD','GL','KXIP','SRH','RPS','KTK','PW',
'RPS'],
inplace=True)
'''
This section contains basic parameters like:
names of team
total matches played
cities
venues(stadium)
umpire names
man of the matches
'''
# 4. Calculating basic parameters
# Storing the team names
teams_names = matches['team1'].unique()
# Total_matches played since 2008 in IPL
total_matches = matches.shape[0]
# Cities where matches were played
cities = matches['city'].unique()
# All venues where matches were played
total_venues = matches['city'].nunique()
# List of all umpires
total_umpires = pd.concat([matches['umpire1'],
matches['umpire2']])
total_umpires = total_umpires.value_counts().reset_index()
# Man of the matches
man_of_matches=matches['player_of_match'].value_counts().reset_index()
man_of_matches.columns=['Player Name',
'player_of_match']
# Visualisation of Umpires
total_umpires.columns=['Umpire Name',
'Matches Umpired']
plt.xticks(rotation=90,
fontsize=6)
sns.barplot(x='Umpire Name',
y='Matches Umpired',
data=total_umpires)
# Visualisation of Man of the match
fig = plt.gcf()
fig.set_size_inches(18.5,
10.5)
plt.xticks(rotation=45,
fontsize=6)
plt.ylim(0,
18)
sns.barplot(x='Player Name',
y='player_of_match',
data=man_of_matches.head(20))
'''
This section is solely for batsman data.
I used the matches dataframe and use feature engineering extract the following parameters for each batsman:
1. singles
2. doubles
3. threes
4. fours
5. fives
6. sixes
scored.
Additionally, I also calculate their highest scores, man of match won, hundreds, fifties etc.
'''
# Computing and storing batsman data
# Calculating batsman parameters and storing them in batting
batting = delivery.groupby(['batsman'])['ball'].count().reset_index()
# Total runs
runs = delivery.groupby(['batsman'])['batsman_runs'].sum().reset_index()
# Ones
ones = delivery.groupby(['batsman'])['batsman_runs'].agg(lambda x: (x==1).sum()).reset_index()
ones = ones.rename(columns={'batsman_runs':'ones'})
# Twos
twos = delivery.groupby(['batsman'])['batsman_runs'].agg(lambda x: (x==2).sum()).reset_index()
twos = twos.rename(columns={'batsman_runs':'twos'})
# Threes
threes = delivery.groupby(['batsman'])['batsman_runs'].agg(lambda x: (x==3).sum()).reset_index()
threes = threes.rename(columns={'batsman_runs':'threes'})
# Fours
fours = delivery.groupby(['batsman'])['batsman_runs'].agg(lambda x: (x==4).sum()).reset_index()
fours = fours.rename(columns={'batsman_runs':'fours'})
# Fives
fives = delivery.groupby(['batsman'])['batsman_runs'].agg(lambda x: (x==5).sum()).reset_index()
fives = fives.rename(columns={'batsman_runs':'fives'})
# Sixes
sixes = delivery.groupby(['batsman'])['batsman_runs'].agg(lambda x: (x==6).sum()).reset_index()
sixes = sixes.rename(columns={'batsman_runs':'sixes'})
# Highest score
highest=delivery.groupby(["match_id", "batsman","batting_team"])['batsman_runs'].sum().reset_index()
highest = highest.groupby(["batsman","batting_team"])["batsman_runs"].max().reset_index()
highest = highest.groupby(["batsman"])["batsman_runs"].max().reset_index()
highest = highest.rename(columns={'batsman_runs':'highest'})
# Matches played
matches_played = delivery.groupby(['batsman'])['match_id'].nunique().reset_index()
matches_played=matches_played.rename(columns={'match_id':'matches'})
# Man of the match
man_of_match= matches['player_of_match'].value_counts().reset_index()
man_of_match['batsman']=man_of_match['index']
man_of_match.drop(['index'], axis = 1, inplace=True)
# Score by a player in matches
scores_by_batsman= delivery.groupby(['match_id','batsman'])['batsman_runs'].sum().reset_index()
# Hundreds
hundreds = scores_by_batsman.groupby(['batsman'])['batsman_runs'].agg(lambda x: (x>=100).sum()).reset_index()
hundreds = hundreds.rename(columns={'batsman_runs':'hundreds'})
# Fifties
fifties = scores_by_batsman.groupby(['batsman'])['batsman_runs'].agg(lambda x: np.logical_and(x>=50, x<100).sum()).reset_index()
fifties = fifties.rename(columns={'batsman_runs':'fifties'})
# Total runs
total_scores = delivery.groupby(['batsman'])['batsman_runs'].agg(lambda x: x.sum()).reset_index()
# Teams played for
teams_played = delivery.groupby(['batsman'])['batting_team'].nunique()
teams_played = pd.DataFrame(teams_played)
teams_played['batsman']=teams_played.index
teams_played.index.name = None # To avoid ambigious index error
teams_played = teams_played.rename(columns={'batting_team':'teams_played'})
teams_played= teams_played[:-1]
# Run outs
run_out = delivery.groupby(['batsman'])['dismissal_kind'].agg(lambda x: (x=='run out').sum()).reset_index()
run_out = run_out.rename(columns={'dismissal_kind':'run_outs'})
# Merging with batting
# Merging runs and renaming appropriatly
batting = batting.merge(runs, left_on='batsman', right_on='batsman', how='outer')
batting = batting.rename(columns={'batsman':'batsman','ball':'balls_played','batsman_runs':'runs_scored'})
batting = batting.merge(ones, left_on='batsman', right_on='batsman', how='outer')
batting = batting.merge(twos, left_on='batsman', right_on='batsman', how='outer')
batting = batting.merge(threes, left_on='batsman', right_on='batsman', how='outer')
batting = batting.merge(fours, left_on='batsman', right_on='batsman', how='outer')
batting = batting.merge(fives, left_on='batsman', right_on='batsman', how='outer')
batting = batting.merge(sixes, left_on='batsman', right_on='batsman', how='outer')
batting = batting.merge(highest, left_on="batsman", right_on="batsman", how="outer")
batting = batting.merge(matches_played, left_on="batsman", right_on="batsman", how="outer")
batting = batting.merge(man_of_match, left_on='batsman', right_on='batsman', how='outer')
batting = batting.merge(hundreds, left_on='batsman', right_on='batsman', how='outer')
batting = batting.merge(fifties, left_on='batsman', right_on='batsman', how='outer')
batting = batting.merge(teams_played, left_on='batsman', right_on='batsman', how='outer')
batting = batting.merge(run_out, left_on='batsman', right_on='batsman', how='outer')
# Calculating strike rate
# Strike rate = runs scored per ball or strike rate = (runs scored)/(balls played)
batting['strike_rate'] = batting['runs_scored']*100/batting['balls_played']
# Calculating average runs
# Average runs = runs scored per match or average runs = (runs scored)/(matches played)
batting['average'] = batting['runs_scored']/batting['matches']
'''
In this section, I analyse the bowler in depth.
I have segregated the bowlers into the following as:
1. First over bowlers
2. Power Play bowlers
3. Middle Over bowlers
4. Middle Over bowlers
5. Nineteenth Over bowlers
6. Death Over bowlers
I calculate different parameters such as economy, and wickets taken per match f
or each category.
To drill down further, the bowlers are also classified based on their bowling
experience(number of balls bowled) in each category.
'''
# Calculating bowler parameters including all overs
balls = delivery.groupby(['bowler'])['ball'].count().reset_index()
# Runs conceded
runs_conceded = delivery.groupby(['bowler'])['total_runs'].sum().reset_index()
runs_conceded = runs_conceded.rename(columns={'total_runs':'runs_conceded'})
# Five wicket haul
fifer = delivery.groupby(['match_id','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
fifer = fifer.groupby(['bowler'])['player_dismissed'].agg(lambda x: (x>=5).sum()).reset_index()
fifer = fifer.rename(columns={'player_dismissed':'fifer'})
# Four wicket haul
fours_w = delivery.groupby(['match_id','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
fours_w = fours_w.groupby(['bowler'])['player_dismissed'].agg(lambda x: (x==4).sum()).reset_index()
fours_w = fours_w.rename(columns={'player_dismissed':'fours'})
# Three wicket haul
threes_w = delivery.groupby(['match_id','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
threes_w = threes_w.groupby(['bowler'])['player_dismissed'].agg(lambda x: (x==3).sum()).reset_index()
threes_w = threes_w.rename(columns={'player_dismissed':'threes'})
# Two wicket
twos_w = delivery.groupby(['match_id','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
twos_w = twos_w.groupby(['bowler'])['player_dismissed'].agg(lambda x: (x==2).sum()).reset_index()
twos_w = twos_w.rename(columns={'player_dismissed':'twos'})
# One wicket
ones_w = delivery.groupby(['match_id','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
ones_w = ones_w.groupby(['bowler'])['player_dismissed'].agg(lambda x: (x==1).sum()).reset_index()
ones_w = ones_w.rename(columns={'player_dismissed':'ones'})
# Number of wides
wides = delivery.groupby(['bowler'])['wide_runs'].agg(lambda x: x.sum()).reset_index()
# Number of bye runs
bye_runs = delivery.groupby(['bowler'])['bye_runs'].agg(lambda x: x.sum()).reset_index()
# Number of no balls bowled
no_balls_runs = delivery.groupby(['bowler'])['noball_runs'].agg(lambda x: x.sum()).reset_index()
# Total penalty runs conceded
penalty_runs = delivery.groupby(['bowler'])['penalty_runs'].agg(lambda x: x.sum()).reset_index()
# Total runs conceded as extra runs
extra_runs = delivery.groupby(['bowler'])['extra_runs'].agg(lambda x: x.sum()).reset_index()
# Dismissal by fielder
caught = delivery.groupby(['bowler'])['dismissal_kind'].agg(lambda x: (x=='caught').sum()).reset_index()
caught = caught.rename(columns={'dismissal_kind':'caught'})
# Dismissal by bowled
bowled = delivery.groupby(['bowler'])['dismissal_kind'].agg(lambda x: (x=='bowled').sum()).reset_index()
bowled = bowled.rename(columns={'dismissal_kind':'bowled'})
# Dismissal by caught and bowled
caught_and_bowled = delivery.groupby(['bowler'])['dismissal_kind'].agg(lambda x: (x=='caught and bowled').sum()).reset_index()
caught_and_bowled = caught_and_bowled.rename(columns={'dismissal_kind':'caught_and_bowled'})
# Dismissal by leg before wicket
lbw = delivery.groupby(['bowler'])['dismissal_kind'].agg(lambda x: (x=='lbw').sum()).reset_index()
lbw = lbw.rename(columns={'dismissal_kind':'lbw'})
# Number of matches played by each bowler
matches_played_bowler = delivery.groupby(['bowler'])['match_id'].nunique().reset_index()
matches_played_bowler=matches_played_bowler.rename(columns={'match_id':'matches'})
# Merging with bowling
bowler = delivery.groupby(['bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
bowler = bowler.rename(columns={'player_dismissed':'wickets'})
bowler = bowler.merge(balls, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(runs_conceded, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(fifer, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(wides, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(bye_runs, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(no_balls_runs, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(penalty_runs, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(extra_runs, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(caught, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(bowled, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(caught_and_bowled, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(lbw, left_on='bowler', right_on='bowler', how='outer')
bowler = bowler.merge(matches_played_bowler, left_on='bowler', right_on='bowler', how='outer')
# Calculating economy
# Economy is runs conceded by the bowler per six balls bowled
# Wicket economy is the average number of wickets taken by bowler in each match
bowler['economy'] = bowler['runs_conceded']*6/(bowler['ball'])
bowler['wicket_economy'] = bowler['wickets']/bowler['matches']
'''
Each section begins with the name of the classification.
In each section, we have some temporary variables identified by temp
followed by some self explanatory suffix.
Finally, all the temporary variables are dropped.
'''
############################## Death Over Bowlers ##############################
#### Segregating death over bowler, power play bowlers and middle over bowler
death_over_bowlers = pd.DataFrame(delivery.groupby(['bowling_team','over'])['bowler'])
death_over_bowlers.columns = death_over_bowlers.columns.astype(str)
temp = death_over_bowlers['0']
death_over_bowlers['team'] = temp.str[0]
death_over_bowlers['over'] = temp.str[1]
death_over_bowlers.drop(['0'], axis=1, inplace=True)
temp = death_over_bowlers['1']
temp1 = delivery[delivery['over']==20]
temp2 = temp1.groupby(['bowling_team'])
temp2 = delivery[['bowling_team','bowler']][delivery['over']==20]
temp_bowler_count = temp2.groupby(['bowling_team','bowler'])['bowler'].count()
temp_bowler_count = pd.DataFrame(temp_bowler_count)
temp_bowler_count['temp_1'] = temp_bowler_count.index
temp_bowler_count['team'] = temp_bowler_count['temp_1'].str[0]
temp_bowler_count['player'] = temp_bowler_count['temp_1'].str[1]
temp_bowler_count.drop(['temp_1'], axis=1, inplace=True)
temp_bowler_count.index.name = None
temp_bowler_count = temp_bowler_count.rename(columns={'bowler':'death_overs_bowled'})
temp_bowler_count = temp_bowler_count[:-2]
death_over_stats = delivery[delivery['over']==20]
death_over_stats = death_over_stats.groupby(['bowling_team','bowler'])['total_runs'].sum().reset_index()
death_over_balls = delivery[delivery['over']==20].groupby(['bowling_team','bowler'])['ball'].count().reset_index()
death_over_wickets = delivery[delivery['over']==20].groupby(['bowling_team','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
death_over_stats = death_over_stats.merge(death_over_balls, left_on=['bowler','bowling_team'], right_on=['bowler', 'bowling_team'], how='outer')
death_over_stats = death_over_stats.merge(death_over_wickets, left_on=['bowler','bowling_team'], right_on=['bowler','bowling_team'], how='outer')
temp_bowler_count = temp_bowler_count.merge(death_over_stats['total_runs'], left_on='player', right_on='bowler', how='outer')
death_over_stats['economy'] = death_over_stats['total_runs']*6/death_over_stats['ball']
temp_bowler_count = temp_bowler_count.rename(columns={'team':'bowling_team','player':'bowler'}).reset_index()
temp_bowler_count.index.name = None
death_over_stats.index.name = None
death_over_stats = death_over_stats.merge(temp_bowler_count, left_on='bowler', right_on='bowler', how='outer')
death_over_stats.drop('ball_x', axis=1, inplace=True)
death_over_stats.drop('player_dismissed_x', axis=1, inplace=True)
death_over_stats = death_over_stats.rename(columns={'player_dismissed_y':'player_dismissed'})
death_over_played_bowler = delivery[delivery['over']==20].groupby(['bowler'])['match_id'].nunique().reset_index()
death_over_played_bowler=death_over_played_bowler.rename(columns={'match_id':'matches'})
death_over_stats = death_over_stats.merge(death_over_played_bowler, left_on='bowler', right_on='bowler', how='outer')
death_over_stats['wicket_economy'] = death_over_stats['player_dismissed']/death_over_stats['matches']
# Dropping unnecessary parameters
del temp_bowler_count
del temp1
del temp2
del death_over_balls
del death_over_bowlers
del death_over_wickets
del death_over_played_bowler
############################## 19th Over Bowlers ##############################
temp2 = delivery[['bowling_team','bowler']][delivery['over']==19]
temp_bowler_count = temp2.groupby(['bowling_team','bowler'])['bowler'].count()
temp_bowler_count = pd.DataFrame(temp_bowler_count)
temp_bowler_count['temp_1'] = temp_bowler_count.index
temp_bowler_count['team'] = temp_bowler_count['temp_1'].str[0]
temp_bowler_count['player'] = temp_bowler_count['temp_1'].str[1]
temp_bowler_count.drop(['temp_1'], axis=1, inplace=True)
temp_bowler_count.index.name = None
temp_bowler_count = temp_bowler_count.rename(columns={'bowler':'19_over_bowled'})
temp_bowler_count = temp_bowler_count[:-2]
nineteenth_over_stats = delivery[delivery['over']==19]
nineteenth_over_stats = nineteenth_over_stats.groupby(['bowling_team','bowler'])['total_runs'].sum().reset_index()
nineteenth_over_balls = delivery[delivery['over']==19].groupby(['bowling_team','bowler'])['ball'].count().reset_index()
nineteenth_over_wickets = delivery[delivery['over']==19].groupby(['bowling_team','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
nineteenth_over_stats = nineteenth_over_stats.merge(nineteenth_over_balls, left_on=['bowling_team','bowler'], right_on=['bowling_team','bowler'], how='outer')
nineteenth_over_stats = nineteenth_over_stats.merge(nineteenth_over_wickets, left_on=['bowling_team','bowler'], right_on=['bowling_team','bowler'], how='outer')
nineteenth_over_stats['economy']=nineteenth_over_stats['total_runs']*6/nineteenth_over_stats['ball']
nineteenth_over_played_bowler = delivery[delivery['over']==19].groupby(['bowler'])['match_id'].nunique().reset_index()
nineteenth_over_played_bowler=nineteenth_over_played_bowler.rename(columns={'match_id':'matches'})
nineteenth_over_stats = nineteenth_over_stats.merge(nineteenth_over_played_bowler, left_on='bowler', right_on='bowler', how='outer')
nineteenth_over_stats['wicket_economy'] = nineteenth_over_stats['player_dismissed']/nineteenth_over_stats['matches']
# Dropping unnecessary parameters
del temp_bowler_count
del temp2
del nineteenth_over_balls
del nineteenth_over_wickets
del nineteenth_over_played_bowler
############################## 1st Over Bowlers ##############################
temp2 = delivery[['bowling_team','bowler']][delivery['over']==1]
temp_bowler_count = temp2.groupby(['bowling_team','bowler'])['bowler'].count()
temp_bowler_count = pd.DataFrame(temp_bowler_count)
temp_bowler_count['temp_1'] = temp_bowler_count.index
temp_bowler_count['team'] = temp_bowler_count['temp_1'].str[0]
temp_bowler_count['player'] = temp_bowler_count['temp_1'].str[1]
temp_bowler_count.drop(['temp_1'], axis=1, inplace=True)
temp_bowler_count.index.name = None
temp_bowler_count = temp_bowler_count.rename(columns={'first_over_bowled':'first_over_balls'})
temp_bowler_count = temp_bowler_count[:-2]
first_over_stats = delivery[delivery['over']==1]
first_over_stats = first_over_stats.groupby(['bowling_team','bowler'])['total_runs'].sum().reset_index()
first_over_balls = delivery[delivery['over']==1].groupby(['bowling_team','bowler'])['ball'].count().reset_index()
first_over_wickets = delivery[delivery['over']==1].groupby(['bowling_team','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
first_over_stats = first_over_stats.merge(first_over_balls, left_on=['bowling_team','bowler'], right_on=['bowling_team','bowler'], how='outer')
first_over_stats = first_over_stats.merge(first_over_wickets, left_on=['bowling_team','bowler'], right_on=['bowling_team','bowler'], how='outer')
first_over_stats['economy']=first_over_stats['total_runs']*6/first_over_stats['ball']
first_over_played_bowler = delivery[delivery['over']==1].groupby(['bowler'])['match_id'].nunique().reset_index()
first_over_played_bowler=first_over_played_bowler.rename(columns={'match_id':'matches'})
first_over_stats = first_over_stats.merge(first_over_played_bowler, left_on='bowler', right_on='bowler', how='outer')
first_over_stats['wicket_economy'] = first_over_stats['player_dismissed']/first_over_stats['matches']
# Dropping unnecessary parameters
del temp_bowler_count
del temp2
del temp
del first_over_balls
del first_over_wickets
del first_over_played_bowler
############################## Power Play Over Bowlers ##############################s
temp2 = delivery[['bowling_team','bowler']][np.logical_and(delivery['over']>=1, delivery['over']<=6)]
temp_bowler_count = temp2.groupby(['bowling_team','bowler'])['bowler'].count()
temp_bowler_count = pd.DataFrame(temp_bowler_count)
temp_bowler_count['temp_1'] = temp_bowler_count.index
temp_bowler_count['team'] = temp_bowler_count['temp_1'].str[0]
temp_bowler_count['player'] = temp_bowler_count['temp_1'].str[1]
temp_bowler_count.drop(['temp_1'], axis=1, inplace=True)
temp_bowler_count.index.name = None
temp_bowler_count = temp_bowler_count.rename(columns={'bowler':'power_play_bowled'})
temp_bowler_count = temp_bowler_count[:-2]
power_play_bowling = delivery[np.logical_and(delivery['over']>=1, delivery['over']<=6)]
power_play_bowling = power_play_bowling.groupby(['bowling_team','bowler'])['total_runs'].sum().reset_index()
power_play_bowling_balls = delivery[np.logical_and(delivery['over']>=1, delivery['over']<=6)].groupby(['bowling_team','bowler'])['ball'].count().reset_index()
power_play_bowling_wickets = delivery[np.logical_and(delivery['over']>=1, delivery['over']<=6)].groupby(['bowling_team','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
power_play_bowling = power_play_bowling.merge(power_play_bowling_balls, left_on=['bowling_team','bowler'], right_on=['bowling_team','bowler'], how='outer')
power_play_bowling = power_play_bowling.merge(power_play_bowling_wickets, left_on=['bowling_team','bowler'], right_on=['bowling_team','bowler'], how='outer')
power_play_bowling['economy']=power_play_bowling['total_runs']*6/power_play_bowling['ball']
power_play_over_played_bowler = delivery[delivery['over']<=6].groupby(['bowler'])['match_id'].nunique().reset_index()
power_play_over_played_bowler=power_play_over_played_bowler.rename(columns={'match_id':'matches'})
power_play_bowling = power_play_bowling.merge(power_play_over_played_bowler, left_on='bowler', right_on='bowler', how='outer')
power_play_bowling['wicket_economy'] = power_play_bowling['player_dismissed']/power_play_bowling['matches']
# Dropping unnecessary parameters
del temp_bowler_count
del temp2
del power_play_bowling_balls
del power_play_bowling_wickets
del power_play_over_played_bowler
############################## Middle Over (6-12) Bowlers ##############################
temp2 = delivery[['bowling_team','bowler']][np.logical_and(delivery['over']>=7, delivery['over']<=12)]
temp_bowler_count = temp2.groupby(['bowling_team','bowler'])['bowler'].count()
temp_bowler_count = pd.DataFrame(temp_bowler_count)
temp_bowler_count['temp_1'] = temp_bowler_count.index
temp_bowler_count['team'] = temp_bowler_count['temp_1'].str[0]
temp_bowler_count['player'] = temp_bowler_count['temp_1'].str[1]
temp_bowler_count.drop(['temp_1'], axis=1, inplace=True)
temp_bowler_count.index.name = None
temp_bowler_count = temp_bowler_count.rename(columns={'bowler':'power_play_bowled'})
temp_bowler_count = temp_bowler_count[:-2]
Middle_overs_six_twelve = delivery[np.logical_and(delivery['over']>=7, delivery['over']<=12)]
Middle_overs_six_twelve = Middle_overs_six_twelve.groupby(['bowling_team','bowler'])['total_runs'].sum().reset_index()
Middle_overs_six_twelve_balls = delivery[np.logical_and(delivery['over']>=7, delivery['over']<=12)].groupby(['bowling_team','bowler'])['ball'].count().reset_index()
Middle_overs_six_twelve_wickets = delivery[np.logical_and(delivery['over']>=7, delivery['over']<=12)].groupby(['bowling_team','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
Middle_overs_six_twelve = Middle_overs_six_twelve.merge(Middle_overs_six_twelve_balls, left_on=['bowling_team','bowler'], right_on=['bowling_team','bowler'], how='outer')
Middle_overs_six_twelve = Middle_overs_six_twelve.merge(Middle_overs_six_twelve_wickets, left_on=['bowling_team','bowler'], right_on=['bowling_team','bowler'], how='outer')
Middle_overs_six_twelve['economy']=Middle_overs_six_twelve['total_runs']*6/Middle_overs_six_twelve['ball']
MOST_over_played_bowler = delivery[np.logical_and(delivery['over']>=7, delivery['over']<=12)].groupby(['bowler'])['match_id'].nunique().reset_index()
MOST_over_played_bowler=MOST_over_played_bowler.rename(columns={'match_id':'matches'})
Middle_overs_six_twelve = Middle_overs_six_twelve.merge(MOST_over_played_bowler, left_on='bowler', right_on='bowler', how='outer')
Middle_overs_six_twelve['wicket_economy'] = Middle_overs_six_twelve['player_dismissed']/Middle_overs_six_twelve['matches']
# Dropping unnecessary parameters
del temp_bowler_count
del temp2
del Middle_overs_six_twelve_balls
del Middle_overs_six_twelve_wickets
del MOST_over_played_bowler
############################## Middle Over (12-18) Bowlers ##############################
temp2 = delivery[['bowling_team','bowler']][np.logical_and(delivery['over']>=7, delivery['over']<=12)]
temp_bowler_count = temp2.groupby(['bowling_team','bowler'])['bowler'].count()
temp_bowler_count = pd.DataFrame(temp_bowler_count)
temp_bowler_count['temp_1'] = temp_bowler_count.index
temp_bowler_count['team'] = temp_bowler_count['temp_1'].str[0]
temp_bowler_count['player'] = temp_bowler_count['temp_1'].str[1]
temp_bowler_count.drop(['temp_1'], axis=1, inplace=True)
temp_bowler_count.index.name = None
temp_bowler_count = temp_bowler_count.rename(columns={'bowler':'power_play_bowled'})
temp_bowler_count = temp_bowler_count[:-2]
Middle_overs_twelve_eighteen = delivery[np.logical_and(delivery['over']>=7, delivery['over']<=12)]
Middle_overs_twelve_eighteen = Middle_overs_twelve_eighteen.groupby(['bowling_team','bowler'])['total_runs'].sum().reset_index()
Middle_overs_twelve_eighteen_balls = delivery[np.logical_and(delivery['over']>=7, delivery['over']<=12)].groupby(['bowling_team','bowler'])['ball'].count().reset_index()
Middle_overs_twelve_eighteen_wickets = delivery[np.logical_and(delivery['over']>=7, delivery['over']<=12)].groupby(['bowling_team','bowler'])['player_dismissed'].agg(lambda x:(x!=0).sum()).reset_index()
Middle_overs_twelve_eighteen = Middle_overs_twelve_eighteen.merge(Middle_overs_twelve_eighteen_balls, left_on=['bowling_team','bowler'], right_on=['bowling_team','bowler'], how='outer')
Middle_overs_twelve_eighteen = Middle_overs_twelve_eighteen.merge(Middle_overs_twelve_eighteen_wickets, left_on=['bowling_team','bowler'], right_on=['bowling_team','bowler'], how='outer')
Middle_overs_twelve_eighteen['economy']=Middle_overs_twelve_eighteen['total_runs']*6/Middle_overs_twelve_eighteen['ball']
MOTE_over_played_bowler = delivery[np.logical_and(delivery['over']>=7, delivery['over']<=12)].groupby(['bowler'])['match_id'].nunique().reset_index()
MOTE_over_played_bowler=MOTE_over_played_bowler.rename(columns={'match_id':'matches'})
Middle_overs_twelve_eighteen = Middle_overs_twelve_eighteen.merge(MOTE_over_played_bowler, left_on='bowler', right_on='bowler', how='outer')
Middle_overs_twelve_eighteen['wicket_economy'] = Middle_overs_twelve_eighteen['player_dismissed']/Middle_overs_twelve_eighteen['matches']
# Dropping unnecessary parameters
del temp_bowler_count
del temp2
del Middle_overs_twelve_eighteen_balls
del Middle_overs_twelve_eighteen_wickets
del MOTE_over_played_bowler
'''
In this section, we use K-Means algorithm to cluster similar bowlers
within each classification and sub classification(bowler experience)
Copy the variables and then perform normalization on them.
Minimax normalization has been used.
'''
############################## Normalizing Bowlers ##############################
first_over= pd.DataFrame()
power_player = pd.DataFrame()
middle_over_s_t = pd.DataFrame()
middle_over_t_e = pd.DataFrame()
nineteenth = pd.DataFrame()
death_over = pd.DataFrame()
first_over = first_over_stats.groupby('bowler')['ball'].agg(lambda x:x.sum()).reset_index()
temp = first_over_stats.groupby('bowler')['total_runs'].agg(lambda x:x.sum()).reset_index()
temp1 = first_over_stats.groupby('bowler')['matches'].agg(lambda x:x.sum()).reset_index()
temp2 = first_over_stats.groupby('bowler')['player_dismissed'].agg(lambda x:x.sum()).reset_index()
first_over = first_over.merge(temp, left_on='bowler', right_on='bowler', how='outer')
first_over = first_over.merge(temp1, left_on='bowler', right_on='bowler', how='outer')
first_over = first_over.merge(temp2, left_on='bowler', right_on='bowler', how='outer')
first_over['economy']=first_over['total_runs']*6/first_over['ball']
first_over['wicket_economy']=first_over['player_dismissed']/first_over['matches']
power_player = power_play_bowling.groupby('bowler')['ball'].agg(lambda x:x.sum()).reset_index()
temp = power_play_bowling.groupby('bowler')['total_runs'].agg(lambda x:x.sum()).reset_index()
temp1 = power_play_bowling.groupby('bowler')['matches'].agg(lambda x:x.sum()).reset_index()
temp2 = power_play_bowling.groupby('bowler')['player_dismissed'].agg(lambda x:x.sum()).reset_index()
power_player = power_player.merge(temp, left_on='bowler', right_on='bowler', how='outer')
power_player = power_player.merge(temp1, left_on='bowler', right_on='bowler', how='outer')
power_player = power_player.merge(temp2, left_on='bowler', right_on='bowler', how='outer')
power_player['economy']=power_player['total_runs']*6/power_player['ball']
power_player['wicket_economy']=power_player['player_dismissed']/power_player['matches']
middle_over_s_t = Middle_overs_six_twelve.groupby('bowler')['ball'].agg(lambda x:x.sum()).reset_index()
temp = Middle_overs_six_twelve.groupby('bowler')['total_runs'].agg(lambda x:x.sum()).reset_index()
temp1 = Middle_overs_six_twelve.groupby('bowler')['matches'].agg(lambda x:x.sum()).reset_index()
temp2 = Middle_overs_six_twelve.groupby('bowler')['player_dismissed'].agg(lambda x:x.sum()).reset_index()
middle_over_s_t = middle_over_s_t.merge(temp, left_on='bowler', right_on='bowler', how='outer')
middle_over_s_t = middle_over_s_t.merge(temp1, left_on='bowler', right_on='bowler', how='outer')
middle_over_s_t = middle_over_s_t.merge(temp2, left_on='bowler', right_on='bowler', how='outer')
middle_over_s_t['economy']=middle_over_s_t['total_runs']*6/middle_over_s_t['ball']
middle_over_s_t['wicket_economy']=middle_over_s_t['player_dismissed']/middle_over_s_t['matches']
middle_over_t_e = Middle_overs_twelve_eighteen.groupby('bowler')['ball'].agg(lambda x:x.sum()).reset_index()
temp = Middle_overs_twelve_eighteen.groupby('bowler')['total_runs'].agg(lambda x:x.sum()).reset_index()
temp1 = Middle_overs_twelve_eighteen.groupby('bowler')['matches'].agg(lambda x:x.sum()).reset_index()
temp2 = Middle_overs_twelve_eighteen.groupby('bowler')['player_dismissed'].agg(lambda x:x.sum()).reset_index()
middle_over_t_e = middle_over_t_e.merge(temp, left_on='bowler', right_on='bowler', how='outer')
middle_over_t_e = middle_over_t_e.merge(temp1, left_on='bowler', right_on='bowler', how='outer')
middle_over_t_e = middle_over_t_e.merge(temp2, left_on='bowler', right_on='bowler', how='outer')
middle_over_t_e['economy']=middle_over_t_e['total_runs']*6/middle_over_t_e['ball']
middle_over_t_e['wicket_economy']=middle_over_t_e['player_dismissed']/middle_over_t_e['matches']
nineteenth = nineteenth_over_stats.groupby('bowler')['ball'].agg(lambda x:x.sum()).reset_index()
temp = nineteenth_over_stats.groupby('bowler')['total_runs'].agg(lambda x:x.sum()).reset_index()
temp1 = nineteenth_over_stats.groupby('bowler')['matches'].agg(lambda x:x.sum()).reset_index()
temp2 = nineteenth_over_stats.groupby('bowler')['player_dismissed'].agg(lambda x:x.sum()).reset_index()
nineteenth = nineteenth.merge(temp, left_on='bowler', right_on='bowler', how='outer')
nineteenth = nineteenth.merge(temp1, left_on='bowler', right_on='bowler', how='outer')
nineteenth = nineteenth.merge(temp2, left_on='bowler', right_on='bowler', how='outer')
nineteenth['economy']=nineteenth['total_runs']*6/nineteenth['ball']
nineteenth['wicket_economy']=nineteenth['player_dismissed']/nineteenth['matches']
death_over = death_over_stats.groupby('bowler')['ball'].agg(lambda x:x.sum()).reset_index()
temp = death_over_stats.groupby('bowler')['total_runs'].agg(lambda x:x.sum()).reset_index()
temp1 = death_over_stats.groupby('bowler')['matches'].agg(lambda x:x.sum()).reset_index()
temp2 = death_over_stats.groupby('bowler')['player_dismissed'].agg(lambda x:x.sum()).reset_index()
death_over = death_over.merge(temp, left_on='bowler', right_on='bowler', how='outer')
death_over = death_over.merge(temp1, left_on='bowler', right_on='bowler', how='outer')
death_over = death_over.merge(temp2, left_on='bowler', right_on='bowler', how='outer')
death_over['economy']=death_over['total_runs']*6/death_over['ball']
death_over['wicket_economy']=death_over['player_dismissed']/death_over['matches']
# Normalizing
# w_economy - stores the wicket economy(Wickets taken per match)
# economy - - stores the runs economy(Runs conceded per 6 balls)
from sklearn.preprocessing import MinMaxScaler
sc= MinMaxScaler()
# First Over
economy = first_over['economy'].values.astype(float)
economy=economy.reshape(-1,1)
w_economy = first_over['wicket_economy'].values.astype(float)
w_economy=w_economy.reshape(-1,1)
economy= sc.fit_transform(economy)
w_economy = sc.fit_transform(w_economy)
economy = pd.DataFrame(economy)
w_economy = pd.DataFrame(w_economy)
first_over['economy_norm'] = economy
first_over['w_economy_norm'] = w_economy
# Power Play
economy = power_player['economy'].values.astype(float)
economy=economy.reshape(-1,1)
w_economy = power_player['wicket_economy'].values.astype(float)
w_economy=w_economy.reshape(-1,1)
economy= sc.fit_transform(economy)
w_economy = sc.fit_transform(w_economy)
economy = pd.DataFrame(economy)
w_economy = pd.DataFrame(w_economy)
power_player['economy_norm'] = economy
power_player['w_economy_norm'] = w_economy
# Middle over (6-12)
economy = middle_over_s_t['economy'].values.astype(float)
economy=economy.reshape(-1,1)
w_economy = middle_over_s_t['wicket_economy'].values.astype(float)
w_economy=w_economy.reshape(-1,1)
economy= sc.fit_transform(economy)
w_economy = sc.fit_transform(w_economy)
economy = pd.DataFrame(economy)
w_economy = pd.DataFrame(w_economy)
middle_over_s_t['economy_norm'] = economy
middle_over_s_t['w_economy_norm'] = w_economy
# Middle over(12-18)
economy = middle_over_t_e['economy'].values.astype(float)
economy=economy.reshape(-1,1)
w_economy = middle_over_t_e['wicket_economy'].values.astype(float)
w_economy=w_economy.reshape(-1,1)
economy= sc.fit_transform(economy)
w_economy = sc.fit_transform(w_economy)
economy = pd.DataFrame(economy)
w_economy = pd.DataFrame(w_economy)
middle_over_t_e['economy_norm'] = economy
middle_over_t_e['w_economy_norm'] = w_economy
# Nineteenth over
economy = nineteenth['economy'].values.astype(float)
economy=economy.reshape(-1,1)
w_economy = nineteenth['wicket_economy'].values.astype(float)
w_economy=w_economy.reshape(-1,1)
economy= sc.fit_transform(economy)
w_economy = sc.fit_transform(w_economy)
economy = pd.DataFrame(economy)
w_economy = pd.DataFrame(w_economy)
nineteenth['economy_norm'] = economy
nineteenth['w_economy_norm'] = w_economy
# Death over
economy = death_over['economy'].values.astype(float)
economy=economy.reshape(-1,1)
w_economy = death_over['wicket_economy'].values.astype(float)
w_economy=w_economy.reshape(-1,1)
economy= sc.fit_transform(economy)
w_economy = sc.fit_transform(w_economy)
economy = pd.DataFrame(economy)
w_economy = pd.DataFrame(w_economy)
death_over['economy_norm'] = economy
death_over['w_economy_norm'] = w_economy
######################### Finding Optimium Clustering #########################
'''
In this section, k-means is applied for each classification and
sub-classification.
'''
#### First over ####
####### Balls >= 100 #######
# Optimum K for balls >= 100
from sklearn.cluster import KMeans
cost =[]
for i in range(1, 20):
KM = KMeans(n_clusters = i, max_iter = 500)
KM.fit(first_over[first_over['ball']>=100][['economy_norm','w_economy_norm']])
cost.append(KM.inertia_)
plt.plot(cost)
# Clustering for balls >= 100
KM = KMeans(n_clusters = 4, max_iter = 500)
KM.fit(first_over[first_over['ball']>=100][['economy_norm','w_economy_norm']])
KM.labels_
plt.scatter(first_over[first_over['ball']>=100]['economy_norm'], first_over[first_over['ball']>=100]['w_economy_norm'], c=KM.labels_, cmap='rainbow')
####### Balls >= 70 and <= 100 #######
# Optimum K for balls >= 70 and <=100
from sklearn.cluster import KMeans
cost =[]
for i in range(1, 20):
KM = KMeans(n_clusters = i, max_iter = 500)
KM.fit(first_over[np.logical_and(first_over['ball']>=50,first_over['ball']<100)][['economy_norm','w_economy_norm']])
cost.append(KM.inertia_)
plt.plot(cost)
# Clustering for balls >= 100
KM = KMeans(n_clusters = 3, max_iter = 500)
KM.fit(first_over[np.logical_and(first_over['ball']>=50,first_over['ball']<100)][['economy_norm','w_economy_norm']])
KM.labels_
plt.scatter(first_over[np.logical_and(first_over['ball']>=50,first_over['ball']<100)]['economy_norm'], first_over[np.logical_and(first_over['ball']>=50,first_over['ball']<100)]['w_economy_norm'], c=KM.labels_, cmap='rainbow')
####### Balls >= 6 and <= 50 #######
# Optimum K for balls >= 6 and <= 50
from sklearn.cluster import KMeans
cost =[]
for i in range(1, 20):
KM = KMeans(n_clusters = i, max_iter = 500)
KM.fit(first_over[np.logical_and(first_over['ball']>=20,first_over['ball']<50)][['economy_norm','w_economy_norm']])
cost.append(KM.inertia_)
plt.plot(cost)
# Clustering for balls >= 100
KM = KMeans(n_clusters = 3, max_iter = 500)
KM.fit(first_over[np.logical_and(first_over['ball']>=20,first_over['ball']<50)][['economy_norm','w_economy_norm']])
KM.labels_
plt.scatter(first_over[np.logical_and(first_over['ball']>=20,first_over['ball']<50)]['economy_norm'], first_over[np.logical_and(first_over['ball']>=20,first_over['ball']<50)]['w_economy_norm'], c=KM.labels_, cmap='rainbow')
#### power play overs ####
#### Balls <= 650 and >=300
from sklearn.cluster import KMeans
cost =[]
for i in range(1, 20):
KM = KMeans(n_clusters = i, max_iter = 500)
KM.fit(power_player[np.logical_and(power_player['ball']>=300, power_player['ball']<=650)][['economy_norm','w_economy_norm']])
cost.append(KM.inertia_)
KM = KMeans(n_clusters = 5, max_iter = 500)
KM.fit(power_player[np.logical_and(power_player['ball']>=300, power_player['ball']<=650)][['economy_norm','w_economy_norm']])
KM.labels_
plt.scatter(power_player[np.logical_and(power_player['ball']>=300, power_player['ball']<=650)]['economy_norm'], power_player[np.logical_and(power_player['ball']>=200, power_player['ball']<=650)]['w_economy_norm'], c=KM.labels_, cmap='rainbow')
plt.scatter(power_player['economy_norm'], power_player['w_economy_norm'])
#### Balls >= 650
from sklearn.cluster import KMeans
cost =[]
for i in range(1, 20):
KM = KMeans(n_clusters = i, max_iter = 500)
KM.fit(power_player[power_player['ball']>=650][['economy_norm','w_economy_norm']])
cost.append(KM.inertia_)
KM = KMeans(n_clusters = 2, max_iter = 500)
KM.fit(power_player[power_player['ball']>=650][['economy_norm','w_economy_norm']])
KM.labels_
plt.scatter(power_player[power_player['ball']>=650]['economy_norm'], power_player[power_player['ball']>=650]['w_economy_norm'], c=KM.labels_, cmap='rainbow')
#### Middle Over 6-12
#### Balls <= 650 and >=300
from sklearn.cluster import KMeans
cost =[]
for i in range(1, 20):
KM = KMeans(n_clusters = i, max_iter = 500)
KM.fit(power_player[np.logical_and(power_player['ball']>=300, power_player['ball']<=650)][['economy_norm','w_economy_norm']])
cost.append(KM.inertia_)
KM = KMeans(n_clusters = 5, max_iter = 500)
KM.fit(power_player[np.logical_and(power_player['ball']>=300, power_player['ball']<=650)][['economy_norm','w_economy_norm']])
KM.labels_
plt.scatter(power_player[np.logical_and(power_player['ball']>=300, power_player['ball']<=650)]['economy_norm'], power_player[np.logical_and(power_player['ball']>=200, power_player['ball']<=650)]['w_economy_norm'], c=KM.labels_, cmap='rainbow')
plt.scatter(power_player['economy_norm'], power_player['w_economy_norm'])
'''
Clustering may not be suitable for every cluster and hence it is applied only
to selected classfications.
'''
'''
This section contains visualizations of economy of bowlers vs players dismissal count
'''
#### Death over scatter plots ####
plt.scatter(death_over_stats[death_over_stats['bowling_team']=='CSK']['economy'], death_over_stats[death_over_stats['bowling_team']=='CSK']['player_dismissed'], alpha=0.5, color='yellow')
plt.scatter(death_over_stats[death_over_stats['bowling_team']=='MI']['economy'], death_over_stats[death_over_stats['bowling_team']=='MI']['player_dismissed'], alpha=0.5, color='blue')
plt.scatter(death_over_stats[death_over_stats['bowling_team']=='RCB']['economy'], death_over_stats[death_over_stats['bowling_team']=='RCB']['player_dismissed'], alpha=0.5, color='red')
plt.scatter(death_over_stats[death_over_stats['bowling_team']=='DD']['economy'], death_over_stats[death_over_stats['bowling_team']=='DD']['player_dismissed'], alpha=0.5, color='m')
plt.scatter(death_over_stats[death_over_stats['bowling_team']=='GL']['economy'], death_over_stats[death_over_stats['bowling_team']=='GL']['player_dismissed'], alpha=0.5, color='orange')
plt.scatter(death_over_stats[death_over_stats['bowling_team']=='SRH']['economy'], death_over_stats[death_over_stats['bowling_team']=='SRH']['player_dismissed'], alpha=0.5, color='k')
plt.scatter(death_over_stats[death_over_stats['bowling_team']=='RR']['economy'], death_over_stats[death_over_stats['bowling_team']=='RR']['player_dismissed'], alpha=0.5, color='g')
#### Nineteenth over scatter plots ####
plt.scatter(nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='CSK']['economy'], nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='CSK']['player_dismissed'], alpha=0.5, color='yellow')
plt.scatter(nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='MI']['economy'], nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='MI']['player_dismissed'], alpha=0.5, color='blue')
plt.scatter(nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='RCB']['economy'], nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='RCB']['player_dismissed'], alpha=0.5, color='red')
plt.scatter(nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='DD']['economy'], nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='DD']['player_dismissed'], alpha=0.5, color='m')
plt.scatter(nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='GL']['economy'], nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='GL']['player_dismissed'], alpha=0.5, color='orange')
plt.scatter(nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='SRH']['economy'], nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='SRH']['player_dismissed'], alpha=0.5, color='k')
plt.scatter(nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='RR']['economy'], nineteenth_over_stats[nineteenth_over_stats['bowling_team']=='RR']['player_dismissed'], alpha=0.5, color='g')
#### First over scatter plots ####
plt.scatter(first_over_stats[first_over_stats['bowling_team']=='CSK']['economy'], first_over_stats[first_over_stats['bowling_team']=='CSK']['player_dismissed'], alpha=0.5, color='yellow')
plt.scatter(first_over_stats[first_over_stats['bowling_team']=='MI']['economy'], first_over_stats[first_over_stats['bowling_team']=='MI']['player_dismissed'], alpha=0.5, color='blue')
plt.scatter(first_over_stats[first_over_stats['bowling_team']=='RCB']['economy'], first_over_stats[first_over_stats['bowling_team']=='RCB']['player_dismissed'], alpha=0.5, color='red')
plt.scatter(first_over_stats[first_over_stats['bowling_team']=='DD']['economy'], first_over_stats[first_over_stats['bowling_team']=='DD']['player_dismissed'], alpha=0.5, color='m')
plt.scatter(first_over_stats[first_over_stats['bowling_team']=='GL']['economy'], first_over_stats[first_over_stats['bowling_team']=='GL']['player_dismissed'], alpha=0.5, color='orange')
plt.scatter(first_over_stats[first_over_stats['bowling_team']=='SRH']['economy'], first_over_stats[first_over_stats['bowling_team']=='SRH']['player_dismissed'], alpha=0.5, color='k')
plt.scatter(first_over_stats[first_over_stats['bowling_team']=='RR']['economy'], first_over_stats[first_over_stats['bowling_team']=='RR']['player_dismissed'], alpha=0.5, color='g')
#### Power play scatter plots ####
plt.scatter(power_play_bowling[power_play_bowling['bowling_team']=='CSK']['economy'], power_play_bowling[power_play_bowling['bowling_team']=='CSK']['player_dismissed'], alpha=0.5, color='yellow')
plt.scatter(power_play_bowling[power_play_bowling['bowling_team']=='MI']['economy'], power_play_bowling[power_play_bowling['bowling_team']=='MI']['player_dismissed'], alpha=0.5, color='blue')
plt.scatter(power_play_bowling[power_play_bowling['bowling_team']=='RCB']['economy'], power_play_bowling[power_play_bowling['bowling_team']=='RCB']['player_dismissed'], alpha=0.5, color='red')
plt.scatter(power_play_bowling[power_play_bowling['bowling_team']=='DD']['economy'], power_play_bowling[power_play_bowling['bowling_team']=='DD']['player_dismissed'], alpha=0.5, color='m')
plt.scatter(power_play_bowling[power_play_bowling['bowling_team']=='GL']['economy'], power_play_bowling[power_play_bowling['bowling_team']=='GL']['player_dismissed'], alpha=0.5, color='orange')
plt.scatter(power_play_bowling[power_play_bowling['bowling_team']=='SRH']['economy'], power_play_bowling[power_play_bowling['bowling_team']=='SRH']['player_dismissed'], alpha=0.5, color='k')
plt.scatter(power_play_bowling[power_play_bowling['bowling_team']=='RR']['economy'], power_play_bowling[power_play_bowling['bowling_team']=='RR']['player_dismissed'], alpha=0.5, color='g')
#### Middle over 6 - 12 scatter plots ####
plt.scatter(Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='CSK']['economy'], Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='CSK']['player_dismissed'], alpha=0.5, color='yellow')
plt.scatter(Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='MI']['economy'], Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='MI']['player_dismissed'], alpha=0.5, color='blue')
plt.scatter(Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='RCB']['economy'], Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='RCB']['player_dismissed'], alpha=0.5, color='red')
plt.scatter(Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='DD']['economy'], Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='DD']['player_dismissed'], alpha=0.5, color='m')
plt.scatter(Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='GL']['economy'], Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='GL']['player_dismissed'], alpha=0.5, color='orange')
plt.scatter(Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='SRH']['economy'], Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='SRH']['player_dismissed'], alpha=0.5, color='k')
plt.scatter(Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='RR']['economy'], Middle_overs_six_twelve[Middle_overs_six_twelve['bowling_team']=='RR']['player_dismissed'], alpha=0.5, color='g')
#### Middle over 12 - 18 scatter plots ####
plt.scatter(Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='CSK']['economy'], Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='CSK']['player_dismissed'], alpha=0.5, color='yellow')
plt.scatter(Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='MI']['economy'], Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='MI']['player_dismissed'], alpha=0.5, color='blue')
plt.scatter(Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='RCB']['economy'], Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='RCB']['player_dismissed'], alpha=0.5, color='red')
plt.scatter(Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='DD']['economy'], Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='DD']['player_dismissed'], alpha=0.5, color='m')
plt.scatter(Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='GL']['economy'], Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='GL']['player_dismissed'], alpha=0.5, color='orange')
plt.scatter(Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='SRH']['economy'], Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='SRH']['player_dismissed'], alpha=0.5, color='k')
plt.scatter(Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='RR']['economy'], Middle_overs_twelve_eighteen[Middle_overs_twelve_eighteen['bowling_team']=='RR']['player_dismissed'], alpha=0.5, color='g')
#### Batting plots
plt.bar(batting[batting['balls_played']>2000]['batsman'], batting[batting['balls_played']>2000]['ones'])
plt.xticks(rotation=45, fontsize=14)
plt.ylable('runs scored')
plt.xlabel('batsman')
plt.title('Singles scored by batsmans')
plt.bar(batting[batting['balls_played']>2000]['batsman'], batting[batting['balls_played']>2000]['twos'])
plt.xticks(rotation=45, fontsize=14)
plt.ylable('runs scored')
plt.xlabel('batsman')
plt.title('Twos scored by batsmans')
plt.bar(batting[batting['balls_played']>2000]['batsman'], batting[batting['balls_played']>2000]['threes'])
plt.xticks(rotation=45, fontsize=14)
plt.ylable('runs scored')
plt.xlabel('batsman')
plt.title('Threes scored by batsmans')
plt.bar(batting[batting['balls_played']>2000]['batsman'], batting[batting['balls_played']>2000]['fours'])
plt.xticks(rotation=45, fontsize=14)
plt.ylable('runs scored')