forked from realpacific/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNoInitializationArray.kt
92 lines (77 loc) · 2.92 KB
/
NoInitializationArray.kt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
package algorithmdesignmanualbook.datastructures
import algorithmdesignmanualbook.print
import java.util.*
import kotlin.random.Random
import kotlin.test.assertFalse
import kotlin.test.assertTrue
/**
* Design a data structure that allows one to search, insert, and delete an integer
* X in O(1) time (i.e. , constant time, independent of the total number of integers
* stored). Assume that 1 ≤ X ≤ n and that there are m + n units of space available,
* where m is the maximum number of integers that can be in the table at any one
* time. (Hint: use two arrays A[1..n] and B[1..m].) You are not allowed to initialize
* either A or B, as that would take O(m) or O(n) operations. This means the arrays
* are full of random garbage to begin with, so you must be very careful.
*
* [Solution link](https://research.swtch.com/sparse):
*
* Two arrays both of them with garbage value
* * dense: contains actual elements in order of insertion
* * sparse: uses *value* of [dense] as index and stores the *index* at which the value is located
*
* So the search value v is legit iff index v of sparse array points to dense's index whose value is also v
*/
class NoInitializationArray(val maxValue: Int, val maxSize: Int) {
private val rand = Random(100)
private val dense = Array(maxSize) { getGarbage() }
private val sparse = Array(maxValue) { getGarbage() }
private var nextIndex = 0
private fun getGarbage() = rand.nextInt(maxValue + 1, maxValue + 1 + 200)
fun print() {
println("dense: ${Arrays.toString(dense)}")
println("sparse: ${Arrays.toString(sparse)}")
}
fun add(value: Int) {
require(value.isNotGarbage())
dense[nextIndex] = value
sparse[value] = nextIndex
nextIndex++
}
private fun hasLegitValue(sparseResult: Int): Boolean {
val value = dense.getOrNull(sparseResult) ?: return false
return value.print().isNotGarbage()
}
private fun Int.isNotGarbage() = this < maxValue
fun delete(value: Int) {
val index = sparse.getOrNull(value) ?: return
if (!hasLegitValue(index)) {
return
}
dense[index] = getGarbage()
sparse[value] = getGarbage()
}
fun search(value: Int): Boolean {
val index = sparse.getOrNull(value) ?: return false
return dense.getOrNull(index) == value
}
}
fun main() {
val solution = NoInitializationArray(maxValue = 20, maxSize = 10)
solution.add(10)
assertTrue { solution.search(10) }
solution.add(6)
assertTrue { solution.search(6) }
solution.add(9)
assertTrue { solution.search(9) }
solution.add(14)
assertTrue { solution.search(14) }
solution.print()
assertFalse { solution.search(100) }
solution.delete(10)
assertFalse { solution.search(10) }
solution.delete(6)
assertFalse { solution.search(6) }
solution.delete(9)
assertFalse { solution.search(9) }
solution.print()
}