Skip to content

Commit

Permalink
Provide GPU version of lifelong cityscapes example.
Browse files Browse the repository at this point in the history
Signed-off-by: Jie Pu <[email protected]>
  • Loading branch information
jaypume committed Jul 29, 2023
1 parent 3e8de61 commit 7e84918
Show file tree
Hide file tree
Showing 3 changed files with 162 additions and 0 deletions.
2 changes: 2 additions & 0 deletions examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,8 @@ Example: [Using Federated Learning Job in Surface Defect Detection Scenario](./f
### Lifelong Learning
Example: [Using Lifelong Learning Job in Thermal Comfort Prediction Scenario](./lifelong_learning/atcii/README.md)

Example: [Using Lifelong Learning in Campus Robot Delivery Scenario](./lifelong_learning/cityscapes/README.md)

### Multi-Edge Inference
Example: [Using ReID to Track an Infected COVID-19 Carrier in Pandemic Scenario](./multiedgeinference/pedestrian_tracking/README.md)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -211,6 +211,23 @@ spec:
EOF
```

### GPU enabled (optional)
If you want GPU to accelerate training or inference in Sedna, you can follow the steps below to enable GPU:

> 1. Follow the instructions in [nvidia-device-plugin](https://github.com/NVIDIA/k8s-device-plugin#quick-start) to make nvidia-docker to be docker runtime.
> 2. Set config `devicePluginEnabled` to `true` and restart edgecore in the gpu edge node.
> 3. Deploy the [device-plugin daemonset](https://github.com/NVIDIA/k8s-device-plugin#enabling-gpu-support-in-kubernetes) and check the device-plugin-pod running status in the gpu edge node.
> 4. Check the capacity and allocatable of gpu edge node status.
> 5. Deploy the [cuda-add pod](https://github.com/NVIDIA/k8s-device-plugin#enabling-gpu-support-in-kubernetes), and wait some time for the pod to be running since the size of cuda-add image is 1.97GB.
> 6. Check the cuda-add pod status, the log of "Test PASSED" means the gpu is enabled successfully.
The disscussion can be found in this [issue](https://github.com/kubeedge/kubeedge/issues/2324#issuecomment-726645832)

When GPU plugin has been enabled, you can use the [robot-dog-delivery-gpu.yaml](./yaml/robot-dog-delivery-gpu.yaml) configuration to create and run lifelong learning job.

To enable GPU in other Sedna features can be similarly configured like the above steps.


## 1.5 Check Lifelong Learning Job
**(1). Query lifelong learning service status**

Expand Down
143 changes: 143 additions & 0 deletions examples/lifelong_learning/cityscapes/yaml/robot-dog-delivery-gpu.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
apiVersion: sedna.io/v1alpha1
kind: LifelongLearningJob
metadata:
name: $job_name
spec:
dataset:
name: "lifelong-robo-dataset"
trainProb: 0.8
trainSpec:
template:
spec:
nodeName: $TRAIN_NODE
dnsPolicy: ClusterFirstWithHostNet
containers:
- image: $cloud_image
name: train-worker
imagePullPolicy: IfNotPresent
args: [ "train.py" ]
env:
- name: "num_class"
value: "24"
- name: "epoches"
value: "1"
- name: "attribute"
value: "real, sim"
- name: "city"
value: "berlin"
- name: "BACKEND_TYPE"
value: "PYTORCH"
- name: "train_ratio"
value: "0.9"
- name: "gpu_ids"
value: "0"
resources:
limits:
nvidia.com/gpu: 1 # requesting 1 GPU
cpu: 6
memory: 12Gi
requests:
cpu: 4
memory: 12Gi
nvidia.com/gpu: 1 # requesting 1 GPU
volumeMounts:
- mountPath: /dev/shm
name: cache-volume
volumes:
- emptyDir:
medium: Memory
sizeLimit: 256Mi
name: cache-volume
trigger:
checkPeriodSeconds: 30
timer:
start: 00:00
end: 24:00
condition:
operator: ">"
threshold: 100
metric: num_of_samples
evalSpec:
template:
spec:
nodeName: $EVAL_NODE
dnsPolicy: ClusterFirstWithHostNet
containers:
- image: $cloud_image
name: eval-worker
imagePullPolicy: IfNotPresent
args: [ "evaluate.py" ]
env:
- name: "operator"
value: "<"
- name: "model_threshold"
value: "0"
- name: "num_class"
value: "24"
- name: "BACKEND_TYPE"
value: "PYTORCH"
- name: "gpu_ids"
value: "0"
resources:
limits:
cpu: 6
memory: 12Gi
nvidia.com/gpu: 1 # requesting 1 GPU
requests:
cpu: 4
memory: 12Gi
nvidia.com/gpu: 1 # requesting 1 GPU
deploySpec:
template:
spec:
nodeName: $INFER_NODE
dnsPolicy: ClusterFirstWithHostNet
hostNetwork: true
containers:
- image: $edge_image
name: infer-worker
imagePullPolicy: IfNotPresent
args: [ "predict.py" ]
env:
- name: "test_data"
value: "/data/test_data"
- name: "num_class"
value: "24"
- name: "unseen_save_url"
value: "/data/unseen_samples"
- name: "INFERENCE_RESULT_DIR"
value: "/data/infer_results"
- name: "BACKEND_TYPE"
value: "PYTORCH"
- name: "gpu_ids"
value: "0"
volumeMounts:
- name: unseenurl
mountPath: /data/unseen_samples
- name: inferdata
mountPath: /data/infer_results
- name: testdata
mountPath: /data/test_data
resources:
limits:
cpu: 6
memory: 12Gi
nvidia.com/gpu: 1 # requesting 1 GPU
requests:
cpu: 4
memory: 12Gi
nvidia.com/gpu: 1 # requesting 1 GPU
volumes:
- name: unseenurl
hostPath:
path: /data/unseen_samples
type: DirectoryOrCreate
- name: inferdata
hostPath:
path: /data/infer_results
type: DirectoryOrCreate
- name: testdata
hostPath:
path: /data/test_data
type: DirectoryOrCreate
outputDir: $OUTPUT/$job_name

0 comments on commit 7e84918

Please sign in to comment.