Skip to content

Latest commit

 

History

History
 
 

03_bert

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

BERT

This directory contains an AIT demo for the BERT language representation model.

Only bert-base-uncased is included.

Prerequisites

Install the dependencies:

python3 -m pip install transformers click torch

Benchmarking

To run a basic benchmark, use benchmark.py:

python3 examples/03_bert/benchmark_ait.py

There are two options for hidden activations, gelu and fast_gelu (fast_gelu by default). gelu is not supported on AMD hardware yet.

python3 examples/03_bert/benchmark_ait.py --activation gelu
python3 examples/03_bert/benchmark_ait.py --activation fast_gelu

The batch size and sequence length can also be configured via the command line:

python3 examples/03_bert/benchmark_ait.py --batch_size 1 --seq_length 128

PyTorch eager mode benchmarks can also be run:

python3 examples/03_bert/benchmark_pt.py

To benchmark BERT embeddings, run benchmark with --encoders-only False

Quick Demo

To run a quick demo with a simple prompt, use demo.py:

python3 examples/03_bert/demo.py --prompt "The quick brown fox jumps over the lazy dog."

The demo prints out the resulting logits. The demo only works with sequence length <= 512.

Multi-GPU profiling

AIT requires to do profiling to decide best algorithms for CUTLASS and CK. To enable multiple GPUs profiling, use the environment variable CUDA_VISIBLE_DEVICES on NVIDIA platform and HIP_VISIBLE_DEVICES on AMD platform.

Reference Speed vs PyTorch Eager

PT = PyTorch 1.12 Eager OOM = Out of Memory

A100-40GB / CUDA 11.6.2

  • Sequence length 64
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1 7.96 125.65 0.71 1399.64
2 8.38 238.59 0.74 2719.15
4 8.29 482.30 0.80 4994.37
8 8.51 939.97 0.95 8439.67
16 8.09 1978.47 1.41 11385.85
32 9.19 3481.34 2.23 14357.58
64 9.12 7016.80 4.14 15458.15
128 14.52 8814.57 8.00 15991.44
256 27.75 9224.39 15.99 16006.79
  • Sequence length 128
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1 8.02 124.72 0.78 1281.52
2 8.29 241.22 0.85 2364.94
4 8.51 470.29 0.99 4044.33
8 8.12 985.72 1.43 5600.93
16 9.22 1735.20 2.21 7232.47
32 9.11 3512.80 4.17 7677.82
64 15.29 4184.93 8.05 7949.06
128 29.44 4347.33 16.03 7987.11
256 56.34 4543.88 31.57 8109.08
  • Sequence length 384
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1 8.72 114.73 1.63 611.91
2 8.31 240.73 1.97 1013.19
4 8.64 463.10 2.55 1569.23
8 9.32 858.70 3.95 2025.62
16 13.90 1151.03 6.80 2354.21
32 26.72 1197.74 13.30 2405.46
64 51.02 1254.34 26.68 2398.95
128 100.26 1276.67 51.60 2480.67
256 OOM OOM 101.55 2520.81
  • Sequence length 1024
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1 9.74 102.65 2.20 454.12
2 11.38 175.75 4.15 481.95
4 13.61 293.90 8.36 478.44
8 25.79 310.15 12.53 638.53
16 49.91 320.59 21.61 740.48
32 97.00 329.91 42.84 746.88
64 191.14 334.83 83.95 762.39
128 OOM OOM 163.96 780.70
256 OOM OOM 324.22 789.58
  • Sequence length 4096
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1 32.82 30.47 18.23 54.87
2 65.25 30.65 35.64 56.11
4 128.73 31.07 103.67 38.58
8 OOM OOM 119.45 66.98
16 OOM OOM 166.25 96.24
32 OOM OOM 333.98 95.81
64 OOM OOM 662.29 96.63
128 OOM OOM 1313.77 97.43
256

MI-250 / ROCm 5.2.3 / HIPCC-10736

1 GCD

  • Sequence length 64
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1 5.72 174.72 2.78 359.88
2 5.96 335.38 2.87 697.76
4 5.85 684.16 2.85 1404.31
8 6.15 1300.72 3.15 2540.72
16 6.14 2605.40 3.78 4231.12
32 7.73 4138.06 5.34 5993.50
64 14.38 4451.07 9.10 7030.42
128 26.18 4889.95 16.45 7780.40
256 49.95 5125.04 31.90 8023.98
  • Sequence length 128
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1 5.76 173.55 2.68 373.03
2 6.06 330.18 2.87 697.33
4 5.96 670.65 3.02 1324.91
8 6.03 1326.23 3.65 2194.62
16 9.35 1711.55 4.98 3212.12
32 16.46 1943.61 8.48 3775.22
64 30.83 2075.74 15.44 4146.40
128 58.74 2179.24 30.57 4187.68
256 115.27 2220.87 59.28 4318.61
  • Sequence length 384
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1 5.78 172.87 2.97 336.14
2 6.02 332.30 3.45 579.89
4 8.00 499.85 4.68 854.16
8 13.79 580.01 7.47 1070.24
16 24.39 656.06 13.04 1226.77
32 45.56 702.33 24.26 1318.80
64 87.84 728.57 47.87 1336.92
128 172.57 741.71 95.22 1344.26
256 352.27 726.71 185.94 1376.78
  • Sequence length 1024
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1 6.86 145.71 4.20 237.84
2 12.41 161.21 5.82 343.62
4 22.25 179.80 10.20 392.26
8 41.94 190.73 18.91 423.05
16 81.03 197.45 37.86 422.60
32 159.06 201.19 71.65 446.62
64 321.51 199.06 148.86 429.95
128 OOM OOM 277.53 461.21
256 OOM OOM 563.07 454.65
  • Sequence length 4096
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1 49.89 20.04 16.18 61.81
2 93.22 21.45 30.67 65.21
4 183.57 21.79 66.78 59.90
8 366.57 21.82 117.49 68.09
16 OOM OOM 231.15 69.22
32 OOM OOM 459.46 69.65
64 OOM OOM 1031.86 62.02
128
256

2 GCDs

  • Sequence length 64
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1
2 5.52 362.55 2.80 714.99
4 6.04 661.73 2.89 1385.05
8 6.07 1317.20 2.82 2835.38
16 6.02 2659.82 3.29 4866.99
32 6.09 5257.45 3.83 8352.10
64 8.53 7506.95 5.81 11013.02
128 15.34 8346.14 10.00 12806.23
256 28.44 9002.30 18.92 13528.13
  • Sequence length 128
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1
2 5.58 358.62 2.68 745.20
4 6.20 644.91 2.83 1411.55
8 6.08 1316.09 3.21 2492.88
16 5.89 2716.79 3.86 4144.50
32 9.86 3247.03 5.41 5915.33
64 17.71 3614.25 9.64 6640.53
128 32.74 3909.15 17.81 7186.25
256 62.73 4080.77 35.73 7165.20
  • Sequence length 384
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1
2 5.57 358.88 3.09 647.71
4 6.12 653.83 3.62 1104.69
8 8.35 958.19 4.94 1620.06
16 14.29 1119.38 8.29 1930.01
32 26.10 1226.17 14.96 2139.07
64 50.01 1279.72 28.22 2268.02
128 97.55 1312.15 55.94 2288.37
256 193.00 1326.44 111.27 2300.68
  • Sequence length 1024
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1
2 6.80 294.16 4.36 458.93
4 13.01 307.55 6.43 622.23
8 23.39 341.99 11.52 694.52
16 44.45 359.94 21.83 732.90
32 87.23 366.84 43.73 731.77
64 172.92 370.12 82.92 771.85
128 352.09 363.54 173.14 739.29
256 OOM OOM 322.97 792.64
  • Sequence length 4096
Batch size PT Latency (ms) PT QPS (seq/s) AIT Latency (ms) AIT QPS (seq/s)
1
2 54.67 36.58 18.31 109.23
4 104.19 38.39 35.09 113.99
8 206.62 38.72 77.03 103.86
16 412.58 38.78 133.59 119.77
32 OOM OOM 263.40 121.49
64 OOM OOM 524.11 122.11
128 OOM OOM 1186.20 107.91
256

Note Performance Results

  • For NVIDIA A100, our test cluster doesn't allow to lock frequency. We make warm up longer to collect more stable results, but it is expected to have small variance to the results with locked frequency.
  • To benchmark MI-250, the first step is to run python3 benchmark_ait.py to generate all necessary model dynamic library files with single GCD. Then run ./benchmark_mi250.sh {batch_size} to simulate data parallel execution on 2 GCDs, each GCD is processing half of the batch.
  • To benchmark MI-250 1 GCD, we lock the frequency with command rocm-smi -d x --setperfdeterminism 1700, where x is the GPU id.
  • To benchmark MI-250 2 GCDs, we observed performance regression with rocm perf-determ mode. The 2 GCDs number is running without perf-determ mode set with command rocm-smi -d x --resetperfdeterminism, where x is the GPU id.
  • PyTorch Eager result doesn't reflect BetterTransformer, mainly due to BetterTransformer integration to TIMM/Transformer package is not yet landed.
  • Performance results are what we can reproduced. It should not be used for other purposes.