forked from Aerolyzer/Aerolyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
88 lines (75 loc) · 2.89 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import numpy as np
import cv2
def sigm(x):
return 1 / (1 + np.exp(-x))
def network(X,y):
syn0 = 2*np.random.random((6,(X.size/6))) - 1 #synapse 0 (in between input and hidden layer)
syn1 = 2*np.random.random((y.size,1)) - 1 #synapse 1 (in between hidden layer and output)
for j in xrange(80000):
l1 = sigm(np.dot(X,syn0)) #hidden layer
l2 = sigm(np.dot(l1,syn1)) #output layer
l2_delta = (y - l2)*(l2*(1-l2))
l1_delta = l2_delta.dot(syn1.T) * (l1 * (1-l1))
syn1 += l1.T.dot(l2_delta)
syn0 += X.T.dot(l1_delta)
print syn0.tolist()
print syn1.tolist()
l1dup = sigm(np.dot(X,syn0))
l2dup = sigm(np.dot(l1dup,syn1))
def getin(img):
mask = np.zeros(img.shape[:2], np.uint8)
mask[0:(img.shape[0] / 2), 0:img.shape[1]] = 255
masked_img = cv2.bitwise_and(img, img, mask = mask)
# Create histograms with 16 bins in range 0-255
color = ('b', 'g', 'r')
b, g, r = cv2.split(img)
dimy, dimx = img.shape[:2]
largest = [0, 0]
it = dimy / 200 #iterations = total number of rows(pixels) / 200
for i in range(dimy / 6, (dimy / 6) * 5, it): #only looking at the middle half of the image
ravg = (sum(r[i]) / float(len(r[i])))
gavg = (sum(g[i]) / float(len(g[i])))
bavg = (sum(b[i]) / float(len(b[i])))
avg = (ravg + gavg + bavg) / 3
pravg = (sum(r[i - it]) / float(len(r[i - it])))
pgavg = (sum(g[i - it]) / float(len(g[i - it])))
pbavg = (sum(b[i - it]) / float(len(b[i - it])))
pavg = (pravg + pgavg + pbavg) / 3
diff = pavg - avg
if diff > largest[0]: #only getting the largest intensity drop.
largest = [diff,i-(it/2)]
sky = img[0:largest[1], 0:dimx]#cropping out landscape
h1 = sky[0:(sky.shape[0] / 2), 0:dimx]#top half of sky
h2 = sky[(sky.shape[0] / 2):(sky.shape[0]), 0:dimx]#bottom half
mask1 = np.zeros(h1.shape[:2], np.uint8)
mask1[0:(h1.shape[0] / 2), 0:h1.shape[1]] = 255
hist1 = [0,0,0]
hist2 = [0,0,0]
max1 = [0,0,0]
max2 = [0,0,0]
for i,col in enumerate(color):
hist1[i] = cv2.calcHist([h1], [i], mask1, [255], [0, 255])
max1[i] = np.argmax(hist1[i][6:250])
mask2 = np.zeros(h2.shape[:2], np.uint8)
mask2[0:(h2.shape[0] / 2), 0:h2.shape[1]] = 255
for j,col in enumerate(color):
hist2[j] = cv2.calcHist([h2], [j], mask2, [255], [0, 255])
max2[j] = np.argmax(hist2[j][6:250])
x = [float(max1[0])/255., float(max1[1])/255., float(max1[2])/255., float(max2[0])/255., float(max2[1])/255., float(max2[2])/255.]
return x
x = []
y = []
for file in os.listdir("./good-imgs"):
pathname = "./good-imgs/" + file
img = cv2.imread(pathname,1)
x.append(getin(img))
y.append([1])
for file in os.listdir("./bad-imgs"):
pathname = "./bad-imgs/" + file
img = cv2.imread(pathname,1)
x.append(getin(img))
y.append([0])
x = np.array(x)
y = np.array(y)
network(x,y)