-
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathcomputeCycling.js
230 lines (199 loc) · 6.99 KB
/
computeCycling.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import bearing from '@turf/bearing'
import distance from '@turf/distance'
import point from 'turf-point'
import brouterRequest from './brouterRequest'
import isSafePath from './isSafePath'
import { computePointsCenter, pointsProcess } from './pointsRequest'
import { isTransportStop } from './utils'
const maxCityDistance = 20 // was used previously, but I think the next threshold is better
/* VERY IMPORTANT PARAM
* 4 is a symbolic number : think of a compass
* but any other number could be argued
* the only limit is the server weight, and map lisibility
* */
const nearestPointsLimit = 4
/* This is a daily cycling infra testing algorithm : we're not really interested in testing rides that
* represent more than 25 km à vol d'oiseau.
* 20 km is the approximate distance ridden by an electric bike in 45 minutes
* considering the real distance is a little bit more than the point to point straight distance.
* */
const maximumBikingDistance = 20
const createBikeRouterQuery = (from, to) =>
encodeURIComponent(`${from.reverse().join(',')}|${to.reverse().join(',')}`)
const createItinerary = (from, to) => {
const query = createBikeRouterQuery([from.lat, from.lon], [to.lat, to.lon])
return brouterRequest(query).then((json) => {
console.log('brouter response')
return {
...json,
fromPoint: from.id,
toPoint: to.id,
backboneRide: to.tags.amenity === 'townhall',
}
})
}
export const segmentGeoJSON = (brouterGeojson) => {
const geojson = brouterGeojson
if (geojson.features.length > 1) throw Error('Oulala pas prévu ça')
const table = getMessages(geojson)
const coordinateStringToNumber = (string) => +string / 10e5
const getLineCoordinates = (line) =>
line && [line[0], line[1]].map(coordinateStringToNumber),
getLineDistance = (line) => line[3],
getLineTags = (line) => line[9]
const { toPoint, fromPoint, backboneRide } = geojson
let mutableLineStringCoordinates = geojson.features[0].geometry.coordinates
// As I understand this, the "messages" table contains brouter's real measurement of distance
// in segments that are grouped, maybe according to tags ?
// The LineString ('geometry') contains the real detailed shape
// Important info for score calculation is contained in the table,
// whereas important info for map display is contained in the LineString
// from the first lineString coords to the first message coords (that correspond to another linestring coord), apply the properties of the message
// ...
// until the last lineString coord, apply the properties of the message, that goes way further in termes of coords but whose distance is right
const featureCollection = {
type: 'FeatureCollection',
features: table.map((line, i) => {
const [lon, lat] = getLineCoordinates(line)
const [coordinates, nextCoordinates] = computeFeatureCoordinates(
mutableLineStringCoordinates,
lon,
lat
)
mutableLineStringCoordinates = nextCoordinates
return {
type: 'Feature',
properties: {
tags: getLineTags(line),
distance: line[3],
elevation: line[2],
backboneRide,
isSafePath: isSafeCyclingSegment(getLineTags(line)),
toPoint,
fromPoint,
},
geometry: {
type: 'LineString',
coordinates,
},
}
}),
}
console.log('line', featureCollection)
return featureCollection
}
const computeFeatureCoordinates = (lineStringCoordinates, lon, lat) => {
let selected = [],
future = []
let i = 0
for (const next of lineStringCoordinates) {
i += 1
const [lon2, lat2] = next
selected.push(next)
const foundBoundary = lon2 == lon && lat2 == lat
if (foundBoundary) {
future = lineStringCoordinates.slice(i)
break
}
}
return [selected, future]
}
export const getMessages = (geojson) => {
const [_, ...table] = geojson.features[0].properties.messages
return table
}
export const computeSafePercentage = (messages) => {
const [safeDistance, total] = messages.reduce(
(memo, next) => {
const safe = isSafePath(next[9]),
distance = next[3]
return [memo[0] + (safe ? +distance : 0), memo[1] + +distance]
},
[0, 0]
)
return (safeDistance / total) * 100
}
const roseDirections = ['sud-ouest', 'nord-ouest', 'nord-est', 'sud-est']
const computeRoseDirection = (bearing) =>
bearing < -90
? 'sud-ouest'
: bearing < 0
? 'nord-ouest'
: bearing < 90
? 'nord-est'
: 'sud-est'
export const createRidesPromises = (points) =>
points
.map((p, i) => {
const point1 = point([p.lon, p.lat])
const nearestPoints = points
.map((p2) => {
const point2 = point([p2.lon, p2.lat])
const d = distance(point2, point1)
const notSame =
p != p2 && // suffices for now, it's binary
isTransportStop(p) === isTransportStop(p2) &&
// don't consider the sibling bus stop for the other bus direction
!(d < 1 && p.tags.name === p2.tags.name)
const pointBearing = bearing(point1, point2),
roseDirection = computeRoseDirection(pointBearing)
return { point: p2, d, notSame, roseDirection }
})
.filter((p) => p.notSame)
.sort((pa, pb) => pa.d - pb.d)
const firstX = nearestPoints
.slice(0, nearestPointsLimit)
.map((p) => p.point)
const mostInterestingXPoints = nearestPoints
.reduce((memo, next) => {
if (memo.length === nearestPointsLimit) return memo
return memo.find(
(element) => element.roseDirection === next.roseDirection
)
? memo
: next.d < maximumBikingDistance
? [...memo, next]
: memo
}, [])
.map((p) => p.point)
return mostInterestingXPoints.map((p2, j) =>
new Promise((resolve) =>
setTimeout(resolve, itineraryRequestDelay * (i + j))
).then(() => createItinerary(p, p2))
)
})
.flat()
const itineraryRequestDelay = 120 // This is fined tuned to handle the brouter server on my computer. It can fail requests at 100
export const isValidRide = (ride) =>
// Exclude itineraries that include a ferry route.
// TODO maybe we should just exclude the subrides that are ferry ? Doesn't matter much on the final result
ride &&
ride.features &&
!getMessages(ride).some((ride) => ride[9].includes('route=ferry'))
export default async (ville, inform = () => null) => {
inform({ loading: `Les points vont être téléchargés` })
const points = await pointsProcess(ville)
console.log('Un point', points[0])
inform({ loading: `Points téléchargés : ${points.length} points` })
const pointsCenter = computePointsCenter(points)
let resolvedPromisesCount = 0
const ridesPromises = createRidesPromises(points)
ridesPromises.map((promise) =>
promise.then(() => {
resolvedPromisesCount += 1
inform({ loading: `🧭 ${resolvedPromisesCount} itinéraires calculés` })
})
)
const rides = await Promise.all(ridesPromises)
const filteredRides = rides.filter(isValidRide)
const score = computeSafePercentage(
filteredRides.map((ride) => getMessages(ride)).flat()
)
const segments = filteredRides
.map((ride) => segmentGeoJSON(ride))
.map((r) => r.features)
.flat()
const result = { pointsCenter, points, segments, score, rides }
inform({ data: result })
return result
}