@@ -939,7 +939,7 @@ def similarity_search(
939939 List of Documents most similar to the query.
940940 """
941941 assert not self ._async_engine , "This method must be called without async_mode"
942- embedding = self .embedding_function .embed_query (text = query )
942+ embedding = self .embeddings .embed_query (query )
943943 return self .similarity_search_by_vector (
944944 embedding = embedding ,
945945 k = k ,
@@ -964,7 +964,7 @@ async def asimilarity_search(
964964 List of Documents most similar to the query.
965965 """
966966 await self .__apost_init__ () # Lazy async init
967- embedding = self .embedding_function . embed_query ( text = query )
967+ embedding = await self .embeddings . aembed_query ( query )
968968 return await self .asimilarity_search_by_vector (
969969 embedding = embedding ,
970970 k = k ,
@@ -988,7 +988,7 @@ def similarity_search_with_score(
988988 List of Documents most similar to the query and score for each.
989989 """
990990 assert not self ._async_engine , "This method must be called without async_mode"
991- embedding = self .embedding_function .embed_query (query )
991+ embedding = self .embeddings .embed_query (query )
992992 docs = self .similarity_search_with_score_by_vector (
993993 embedding = embedding , k = k , filter = filter
994994 )
@@ -1011,7 +1011,7 @@ async def asimilarity_search_with_score(
10111011 List of Documents most similar to the query and score for each.
10121012 """
10131013 await self .__apost_init__ () # Lazy async init
1014- embedding = self .embedding_function . embed_query (query )
1014+ embedding = await self .embeddings . aembed_query (query )
10151015 docs = await self .asimilarity_search_with_score_by_vector (
10161016 embedding = embedding , k = k , filter = filter
10171017 )
@@ -1065,7 +1065,7 @@ def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, floa
10651065 page_content = result .EmbeddingStore .document ,
10661066 metadata = result .EmbeddingStore .cmetadata ,
10671067 ),
1068- result .distance if self .embedding_function is not None else None ,
1068+ result .distance if self .embeddings is not None else None ,
10691069 )
10701070 for result in results
10711071 ]
@@ -1569,7 +1569,7 @@ async def afrom_texts(
15691569 ** kwargs : Any ,
15701570 ) -> PGVector :
15711571 """Return VectorStore initialized from documents and embeddings."""
1572- embeddings = embedding .embed_documents (list (texts ))
1572+ embeddings = await embedding .aembed_documents (list (texts ))
15731573 return await cls .__afrom (
15741574 texts ,
15751575 embeddings ,
@@ -1992,7 +1992,7 @@ def max_marginal_relevance_search(
19921992 Returns:
19931993 List[Document]: List of Documents selected by maximal marginal relevance.
19941994 """
1995- embedding = self .embedding_function .embed_query (query )
1995+ embedding = self .embeddings .embed_query (query )
19961996 return self .max_marginal_relevance_search_by_vector (
19971997 embedding ,
19981998 k = k ,
@@ -2031,7 +2031,7 @@ async def amax_marginal_relevance_search(
20312031 List[Document]: List of Documents selected by maximal marginal relevance.
20322032 """
20332033 await self .__apost_init__ () # Lazy async init
2034- embedding = self .embedding_function . embed_query (query )
2034+ embedding = await self .embeddings . aembed_query (query )
20352035 return await self .amax_marginal_relevance_search_by_vector (
20362036 embedding ,
20372037 k = k ,
@@ -2070,7 +2070,7 @@ def max_marginal_relevance_search_with_score(
20702070 List[Tuple[Document, float]]: List of Documents selected by maximal marginal
20712071 relevance to the query and score for each.
20722072 """
2073- embedding = self .embedding_function .embed_query (query )
2073+ embedding = self .embeddings .embed_query (query )
20742074 docs = self .max_marginal_relevance_search_with_score_by_vector (
20752075 embedding = embedding ,
20762076 k = k ,
@@ -2111,7 +2111,7 @@ async def amax_marginal_relevance_search_with_score(
21112111 relevance to the query and score for each.
21122112 """
21132113 await self .__apost_init__ () # Lazy async init
2114- embedding = self .embedding_function . embed_query (query )
2114+ embedding = await self .embeddings . aembed_query (query )
21152115 docs = await self .amax_marginal_relevance_search_with_score_by_vector (
21162116 embedding = embedding ,
21172117 k = k ,
0 commit comments