You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<p>TriNMFk is a Non-negative Matrix Factorization module with the capability to do automatic model determination for both estimating the number of latent patterns (<codeclass="docutils literal notranslate"><spanclass="pre">Wk</span></code>) and clusters (<codeclass="docutils literal notranslate"><spanclass="pre">Hk</span></code>).</p>
<li><p><strong>experiment_name</strong> (<em>str</em><em>, </em><em>optional</em>) – Name used for the experiment. Default is “TriNMFk”.</p></li>
770
770
<li><p><strong>nmfk_params</strong> (<em>str</em><em>, </em><em>optional</em>) – Parameters for NMFk. See documentation for NMFk for the options.</p></li>
771
+
<li><p><strong>save_path</strong> (<em>str</em><em>, </em><em>optional</em>) – Used for save location when NMFk fit is not performed first, and TriNMFk fit is done.</p></li>
771
772
<li><p><strong>nmf_verbose</strong> (<em>bool</em><em>, </em><em>optional</em>) – If True, shows progress in each NMF operation. The default is False.</p></li>
772
773
<li><p><strong>use_gpu</strong> (<em>bool</em><em>, </em><em>optional</em>) – If True, uses GPU for operations. The default is True.</p></li>
773
774
<li><p><strong>n_jobs</strong> (<em>int</em><em>, </em><em>optional</em>) – Number of parallel jobs. Use -1 to use all available resources. The default is 1.</p></li>
@@ -819,7 +820,8 @@ <h2>Submodules<a class="headerlink" href="#submodules" title="Link to this headi
<spanclass="sig-name descname"><spanclass="pre">fit_tri_nmfk</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">X</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">k1k2</span></span><spanclass="p"><spanclass="pre">:</span></span><spanclass="w"></span><spanclass="n"><spanclass="pre">tuple</span></span></em><spanclass="sig-paren">)</span><aclass="reference internal" href="_modules/TELF/factorization/TriNMFk.html#TriNMFk.fit_tri_nmfk"><spanclass="viewcode-link"><spanclass="pre">[source]</span></span></a><aclass="headerlink" href="#TELF.factorization.TriNMFk.TriNMFk.fit_tri_nmfk" title="Link to this definition">#</a></dt>
822
-
<dd><p>Factorize the input matrix <codeclass="docutils literal notranslate"><spanclass="pre">X</span></code>, after applying <codeclass="docutils literal notranslate"><spanclass="pre">fit_nmfk()</span></code> to select the <codeclass="docutils literal notranslate"><spanclass="pre">Wk</span></code> and <codeclass="docutils literal notranslate"><spanclass="pre">Hk</span></code>, to factorize the given matrix with <codeclass="docutils literal notranslate"><spanclass="pre">k1k2=(Wk,</span><spanclass="pre">Hk)</span></code>.</p>
823
+
<dd><p>Factorize the input matrix <codeclass="docutils literal notranslate"><spanclass="pre">X</span></code>.</p>
824
+
<p>after applying <codeclass="docutils literal notranslate"><spanclass="pre">fit_nmfk()</span></code> to select the <codeclass="docutils literal notranslate"><spanclass="pre">Wk</span></code> and <codeclass="docutils literal notranslate"><spanclass="pre">Hk</span></code>, to factorize the given matrix with <codeclass="docutils literal notranslate"><spanclass="pre">k1k2=(Wk,</span><spanclass="pre">Hk)</span></code>.</p>
0 commit comments