-
-
Notifications
You must be signed in to change notification settings - Fork 149
Open
Labels
documentationImprovements or additions to documentationImprovements or additions to documentation
Description
for a single img
all predict time: 0.0109 秒
all predict time: 0.0109 秒
all predict time: 0.0109 秒
for batch=6
all predict time: 0.0496 秒
all predict time: 0.0511 秒
all predict time: 0.0480 秒
all predict time: 0.0524 秒
all predict time: 0.0519 秒
test code
def tensorrt_yolo_infer():
print("======start tensorrt_yolo_infer ===========")
MODEL_PATH = "/opt/yolo/test/yolobox_speed/output/yolov8l-obb-640-55.engine"
option = InferOption()
option.enable_swap_rb()
# option.enable_performance_report()
model = OBBModel(MODEL_PATH, option)
rio_list = []
for img_path in image_cut_path:
image = cv2.imread(img_path)
# image = cv2.resize(image, (640, 480))
# print(image.shape)
rio_list.append(image)
for _ in range(50):
time.sleep(3)
sti = time.time()
results = model.predict(rio_list)
print(f"all predict time: {time.time() - sti:.4f} 秒")
# model.performance_report()
use trtyolo
get onnx and trtexec
get engine
why cant get about 3.6ms
with yolo11l-OBB in doc?
Metadata
Metadata
Assignees
Labels
documentationImprovements or additions to documentationImprovements or additions to documentation