Skip to content

[Doc]: about jetson AGX Orin,yolov8l OBB model predict time #102

@jaffe-fly

Description

@jaffe-fly

for a single img

all predict time: 0.0109 秒
all predict time: 0.0109 秒
all predict time: 0.0109 秒

for batch=6

all predict time: 0.0496 秒
all predict time: 0.0511 秒
all predict time: 0.0480 秒
all predict time: 0.0524 秒
all predict time: 0.0519 秒

test code

def tensorrt_yolo_infer():
    print("======start tensorrt_yolo_infer ===========")
    MODEL_PATH = "/opt/yolo/test/yolobox_speed/output/yolov8l-obb-640-55.engine"
    option = InferOption()
    option.enable_swap_rb()
    # option.enable_performance_report()

    model = OBBModel(MODEL_PATH, option)

    rio_list = []
    for img_path in image_cut_path:
        image = cv2.imread(img_path)
        # image = cv2.resize(image, (640, 480))
        # print(image.shape)
        rio_list.append(image)

    for _ in range(50):
        time.sleep(3)
        sti = time.time()
        results = model.predict(rio_list)
        print(f"all predict time: {time.time() - sti:.4f} 秒")
        # model.performance_report()

use trtyolo get onnx and trtexec get engine
why cant get about 3.6ms with yolo11l-OBB in doc?

Metadata

Metadata

Assignees

Labels

documentationImprovements or additions to documentation

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions