-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
350 lines (293 loc) · 14 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import gc
import os
import argparse
import logging
from logging import getLogger
from contextlib import nullcontext
from pathlib import Path
from packaging import version
from tqdm import tqdm
import numpy as np
import torch
from torch.utils.tensorboard.writer import SummaryWriter
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
StableDiffusionXLPipeline,
)
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from scheduler_lcm import LCMScheduler
from instance_metrics import InstanceMetrics
from dgm_metrics import DGMMetrics
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.27.0.dev0")
logger = getLogger(__name__)
def log_testing(vae, args, writer, device, weight_dtype):
logger.info("Running testing... ")
pipeline = StableDiffusionXLPipeline.from_pretrained(
args.pretrained_teacher_model,
vae=vae,
scheduler=LCMScheduler.from_pretrained(args.pretrained_teacher_model, subfolder="scheduler"),
revision=args.revision,
torch_dtype=weight_dtype,
).to(device)
pipeline.set_progress_bar_config(disable=True)
pipeline.scheduler.config.num_original_inference_steps = args.num_original_inference_steps
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
latest = checkpoints[-1]
to_load = Path(args.output_dir, latest)
pipeline.load_lora_weights(to_load)
pipeline.fuse_lora(lora_scale=args.lora_scale)
if args.enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
pipeline.unet.eval()
instance_metrics = InstanceMetrics(device)
if os.path.exists(Path(args.train_data_dir, "latents.pt")):
real_reps_dir = Path(args.train_data_dir) / "real_reps"
else:
real_reps_dir = Path(args.train_data_dir).parent / "real_reps"
dgm_metrics = DGMMetrics(device, args.dgm_metrics, args.output_dir, str(real_reps_dir), args.dgm_metrics_batch_size)
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=device).manual_seed(args.seed)
validation_prompts = [
"cute sundar pichai character",
"robotic cat with wings",
"a photo of yoda",
"a cute creature with blue eyes",
]
with open("data/train_captions.txt", "r") as f:
train_prompts = f.read().splitlines()
image_logs = []
for _, prompt in tqdm(enumerate(validation_prompts)):
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(device.type, dtype=weight_dtype)
with autocast_ctx:
images = pipeline(
prompt=prompt,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.num_images_per_prompt,
generator=generator,
guidance_scale=args.guidance_scale,
).images
image_logs.append({"validation_prompt": prompt, "images": images})
init_noise = None
if os.path.exists("data/init_noise.pt"):
logger.info("Using custom noise samples for sampling... ")
init_noise = torch.load("data/init_noise.pt")
assert len(init_noise) == len(train_prompts)
train_gen_images_dir = Path(args.output_dir, "train_gen_images", f"{args.num_inference_steps}_steps")
train_gen_images_dir.mkdir(parents=True)
latents, clip_scores, aesthetic_scores = [], [], []
for i, prompt in tqdm(enumerate(train_prompts)):
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(device.type, dtype=weight_dtype)
with autocast_ctx:
latent = pipeline(
prompt=prompt,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=1,
generator=generator,
latents=init_noise[i].unsqueeze(0) if init_noise is not None else None,
guidance_scale=args.guidance_scale,
output_type="latent",
).images
latents.append(latent[0].cpu())
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast
if needs_upcasting:
pipeline.upcast_vae()
latent = latent.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)
elif latent.dtype != pipeline.vae.dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
pipeline.vae = pipeline.vae.to(latent.dtype)
# unscale/denormalize the latent
# denormalize with the mean and std if available and not None
has_latents_mean = hasattr(pipeline.vae.config, "latents_mean") and pipeline.vae.config.latents_mean is not None
has_latents_std = hasattr(pipeline.vae.config, "latents_std") and pipeline.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(pipeline.vae.config.latents_mean).view(1, 4, 1, 1).to(latent.device, latent.dtype)
)
latents_std = (
torch.tensor(pipeline.vae.config.latents_std).view(1, 4, 1, 1).to(latent.device, latent.dtype)
)
latent = latent * latents_std / pipeline.vae.config.scaling_factor + latents_mean
else:
latent = latent / pipeline.vae.config.scaling_factor
image = pipeline.vae.decode(latent, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
pipeline.vae.to(dtype=torch.float16)
# apply watermark if available
if pipeline.watermark is not None:
image = pipeline.watermark.apply_watermark(image)
image = pipeline.image_processor.postprocess(image, output_type="pil")[0]
# Offload all models
pipeline.maybe_free_model_hooks()
clip_score, aesthetic_score = instance_metrics.compute_instance_metrics(image, prompt)
clip_scores.append(clip_score)
aesthetic_scores.append(aesthetic_score)
image.save(train_gen_images_dir / f"{i}.jpg")
avg_clip_score = sum(clip_scores) / len(clip_scores)
avg_aesthetic_score = sum(aesthetic_scores) / len(aesthetic_scores)
latents = torch.stack(latents).float()
torch.save(latents, train_gen_images_dir / "latents.pt")
if os.path.exists(Path(args.train_data_dir, "latents.pt")):
latents_train = torch.load(Path(args.train_data_dir, "latents.pt"))
latent_mse = torch.nn.functional.mse_loss(latents, latents_train)
else:
logger.info(f"The train_data_dir {args.train_data_dir} does not have a latents.pt. Cannot compute latent MSE.")
latent_mse = None
logger.info("Computing DGM eval metrics... ")
train_real_images_dir = args.train_data_dir
dgm_inception_scores = dgm_metrics.compute_dgm_metrics([train_real_images_dir, str(train_gen_images_dir)], "inception")["run00"]
logger.info("Computed Inception DGM eval metrics... ")
dgm_dinov2_scores = dgm_metrics.compute_dgm_metrics([train_real_images_dir, str(train_gen_images_dir)], "dinov2")["run00"]
logger.info("Computed DINOv2 DGM eval metrics... ")
tag_suffix = f"[{args.num_inference_steps} steps]"
for log in image_logs:
images = log["images"]
validation_prompt = f"{log['validation_prompt']} {tag_suffix}"
formatted_images = []
for image in images:
formatted_images.append(np.asarray(image))
formatted_images = np.stack(formatted_images)
writer.add_images(validation_prompt, formatted_images, 0, dataformats="NHWC")
writer.add_scalar(f"clip score {tag_suffix}", avg_clip_score, 0)
writer.add_scalar(f"aesthetic score {tag_suffix}", avg_aesthetic_score, 0)
if latent_mse is not None:
writer.add_scalar(f"latent mse {tag_suffix}", latent_mse, 0)
for k, v in dgm_inception_scores.items():
writer.add_scalar(f"inception {k} score {tag_suffix}", v, 0)
for k, v in dgm_dinov2_scores.items():
writer.add_scalar(f"dinov2 {k} score {tag_suffix}", v, 0)
writer.close()
del pipeline
gc.collect()
torch.cuda.empty_cache()
return image_logs
def parse_args():
parser = argparse.ArgumentParser(description="Testing script.")
# ----------Model Checkpoint Loading Arguments----------
parser.add_argument(
"--pretrained_teacher_model",
type=str,
default=None,
required=True,
help="Path to pretrained LDM teacher model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_model_name_or_path",
type=str,
default=None,
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
)
parser.add_argument(
"--teacher_revision",
type=str,
default=None,
required=False,
help="Revision of pretrained LDM teacher model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained LDM model identifier from huggingface.co/models.",
)
# ----Sampling Arguments----
parser.add_argument(
"--output_dir",
type=str,
default="lcm-xl-distilled",
help="The directory where the model predictions and checkpoints will be loaded from and written to.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible sampling.")
parser.add_argument("--num_original_inference_steps", type=int, default=100, help="Default number of inference steps")
parser.add_argument("--num_inference_steps", type=int, default=4, help="Number of inference steps during validation")
parser.add_argument("--num_images_per_prompt", type=int, default=4, help="Number of images to generate per prompt")
parser.add_argument("--guidance_scale", type=float, default=0.0, help="Imagen classifier-free guidance scale")
parser.add_argument("--lora_scale", type=float, default=1.0, help="Controls how much to influence the outputs with the LoRA parameters")
# ----Metric Arguments----
parser.add_argument("--train_data_dir", type=str, help="Path to training images for computing DGM eval metrics")
parser.add_argument("--dgm_metrics", type=str, nargs="+", default=["fd", "fd-infinity", "kd", "prdc",
"is", "authpct", "ct", "ct_test", "ct_modified",
"fls", "fls_overfit", "vendi", "sw_approx"],
help="metrics to compute")
parser.add_argument("--dgm_metrics_batch_size", type=int, default=8, help="Batch size to compute DGM metrics")
# ----Logging----
parser.add_argument(
"--logging_dir",
type=str,
default="logs/text2image-fine-tune",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
# ----Optimizations----
parser.add_argument("--weight_dtype", type=str, default="fp32", choices=["fp16", "bf16", "fp32"])
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
args = parser.parse_args()
return args
def main(args):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
set_seed(args.seed)
assert os.path.exists(args.output_dir)
# Load VAE from SDXL checkpoint (or more stable VAE)
vae_path = (
args.pretrained_teacher_model
if args.pretrained_vae_model_name_or_path is None
else args.pretrained_vae_model_name_or_path
)
vae = AutoencoderKL.from_pretrained(
vae_path,
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
revision=args.teacher_revision,
)
vae.requires_grad_(False)
# Handle mixed precision and device placement
weight_dtype = torch.float32
if args.weight_dtype == "fp16":
weight_dtype = torch.float16
elif args.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if args.pretrained_vae_model_name_or_path is None:
vae.to(device, dtype=torch.float32)
else:
vae.to(device, dtype=weight_dtype)
# Enable optimizations
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
logging_dir = Path(args.output_dir, args.logging_dir)
writer = SummaryWriter(log_dir=logging_dir)
log_testing(vae, args, writer, device, weight_dtype)
if __name__ == "__main__":
args = parse_args()
main(args)