-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cm.py
1547 lines (1370 loc) · 66.6 KB
/
train_cm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding=utf-8
import argparse
import copy
import functools
import gc
import logging
import math
import os
import random
import shutil
from contextlib import nullcontext
from pathlib import Path
import accelerate
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
StableDiffusionXLPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import cast_training_params, resolve_interpolation_mode
from diffusers.utils import (
check_min_version,
convert_state_dict_to_diffusers,
convert_unet_state_dict_to_peft,
is_wandb_available,
)
from diffusers.utils.import_utils import is_xformers_available
from scheduler_lcm import LCMScheduler
from instance_metrics import InstanceMetrics
if is_wandb_available():
import wandb # type: ignore
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.27.0.dev0")
logger = get_logger(__name__)
DATASET_NAME_MAPPING = {
"lambdalabs/pokemon-blip-captions": ("image", "text"),
}
class DDIMSolver:
def __init__(self, alphas, sigmas, num_train_timesteps=1000, num_discr_timesteps=100):
assert num_train_timesteps % num_discr_timesteps == 0
step_ratio = num_train_timesteps // num_discr_timesteps # 10
self.num_train_timesteps = num_train_timesteps
self.num_discr_timesteps = num_discr_timesteps
# timesteps in Stable Diffusion are from 1 to T=1000
self.start_timesteps = (np.arange(1, num_discr_timesteps + 1) * step_ratio).astype(np.int64) # 10,20,30,...,990,1000
self.start_timesteps = self.start_timesteps[::-1].copy() # 1000,990,...,30,20,10
start_timesteps_indices = self.start_timesteps - 1 # 999,989,...,29,19,9
self.next_timesteps = (np.arange(num_discr_timesteps) * step_ratio).astype(np.int64) # 0,10,20,...,980,990
self.next_timesteps = self.next_timesteps[::-1].copy() # 990,980,...,20,10,0
next_timesteps_indices = self.next_timesteps - 1 # 989,979,...,19,9,-1
self.ddim_alphas_start = alphas[start_timesteps_indices]
self.ddim_alphas_next = np.asarray(alphas[next_timesteps_indices[:-1]].tolist() + [1.])
self.ddim_sigmas_start = sigmas[start_timesteps_indices]
self.ddim_sigmas_next = np.asarray(sigmas[next_timesteps_indices[:-1]].tolist() + [0.])
# Convert to torch tensors
self.start_timesteps = torch.from_numpy(self.start_timesteps).long()
self.next_timesteps = torch.from_numpy(self.next_timesteps).long()
self.ddim_alphas_start = torch.from_numpy(self.ddim_alphas_start)
self.ddim_alphas_next = torch.from_numpy(self.ddim_alphas_next)
self.ddim_sigmas_start = torch.from_numpy(self.ddim_sigmas_start)
self.ddim_sigmas_next = torch.from_numpy(self.ddim_sigmas_next)
def to(self, device):
self.start_timesteps = self.start_timesteps.to(device)
self.next_timesteps = self.next_timesteps.to(device)
self.ddim_alphas_start = self.ddim_alphas_start.to(device)
self.ddim_alphas_next = self.ddim_alphas_next.to(device)
self.ddim_sigmas_start = self.ddim_sigmas_start.to(device)
self.ddim_sigmas_next = self.ddim_sigmas_next.to(device)
return self
def step(self, x_t, pred_noise, timestep_indices):
alpha_start = self.ddim_alphas_start[timestep_indices]
alpha_start = reshape_tensor_like(alpha_start, x_t.shape)
alpha_next = self.ddim_alphas_next[timestep_indices]
alpha_next = reshape_tensor_like(alpha_next, x_t.shape)
sigma_start = self.ddim_sigmas_start[timestep_indices]
sigma_start = reshape_tensor_like(sigma_start, x_t.shape)
sigma_next = self.ddim_sigmas_next[timestep_indices]
sigma_next = reshape_tensor_like(sigma_next, x_t.shape)
pred_x_0 = (x_t - sigma_start * pred_noise) / alpha_start
dir_x_t = sigma_next * pred_noise
x_next = alpha_next * pred_x_0 + dir_x_t
return None, x_next
class EulerSolver:
def __init__(self, betas, sigmas, num_train_timesteps=1000, num_discr_timesteps=100):
assert num_train_timesteps % num_discr_timesteps == 0
step_ratio = num_train_timesteps // num_discr_timesteps # 10
self.num_train_timesteps = num_train_timesteps
self.num_discr_timesteps = num_discr_timesteps
# timesteps in Stable Diffusion are from 1 to T=1000
self.start_timesteps = (np.arange(1, num_discr_timesteps + 1) * step_ratio).astype(np.int64) # 10,20,30,...,990,1000
self.start_timesteps = self.start_timesteps[::-1].copy() # 1000,990,...,30,20,10
start_timesteps_indices = self.start_timesteps - 1 # 999,989,...,29,19,9
self.next_timesteps = (np.arange(num_discr_timesteps) * step_ratio).astype(np.int64) # 0,10,20,...,980,990
self.next_timesteps = self.next_timesteps[::-1].copy() # 990,980,...,20,10,0
self.euler_betas = betas[start_timesteps_indices]
self.euler_sigmas = sigmas[start_timesteps_indices]
# Convert to torch tensors
self.start_timesteps = torch.from_numpy(self.start_timesteps).long()
self.next_timesteps = torch.from_numpy(self.next_timesteps).long()
self.euler_betas = torch.from_numpy(self.euler_betas)
self.euler_sigmas = torch.from_numpy(self.euler_sigmas)
def to(self, device):
self.start_timesteps = self.start_timesteps.to(device)
self.next_timesteps = self.next_timesteps.to(device)
self.euler_betas = self.euler_betas.to(device)
self.euler_sigmas = self.euler_sigmas.to(device)
return self
def step(self, x_t, pred_noise, timestep_indices):
start_timestep = self.start_timesteps[timestep_indices].float()
next_timestep = self.next_timesteps[timestep_indices].float()
d_t = (next_timestep - start_timestep) / self.num_train_timesteps
d_t = reshape_tensor_like(d_t, x_t.shape)
beta = self.euler_betas[timestep_indices]
beta = reshape_tensor_like(beta, x_t.shape)
sigma = self.euler_sigmas[timestep_indices]
sigma = reshape_tensor_like(sigma, x_t.shape)
x_t_coeff = -0.5 * beta
pred_noise_coeff = 0.5 * (1 / sigma) * beta
derivative = x_t_coeff * x_t + pred_noise_coeff * pred_noise
x_next = x_t + d_t * derivative
return derivative, x_next
class HeunSolver:
def __init__(self, betas, sigmas, num_train_timesteps=1000, num_discr_timesteps=100):
assert num_train_timesteps % num_discr_timesteps == 0
step_ratio = num_train_timesteps // num_discr_timesteps # 10
self.num_train_timesteps = num_train_timesteps
self.num_discr_timesteps = num_discr_timesteps
# timesteps in Stable Diffusion are from 1 to T=1000
self.start_timesteps = (np.arange(1, num_discr_timesteps + 1) * step_ratio).astype(np.int64) # 10,20,30,...,990,1000
self.start_timesteps = self.start_timesteps[::-1].copy() # 1000,990,...,30,20,10
self.next_timesteps = (np.arange(num_discr_timesteps) * step_ratio).astype(np.int64) # 0,10,20,...,980,990
self.next_timesteps = self.next_timesteps[::-1].copy() # 990,980,...,20,10,0
next_timesteps_indices = self.next_timesteps - 1 # 989,979,...,19,9,-1
self.heun_betas = np.asarray(betas[next_timesteps_indices[:-1]].tolist() + [betas[0]])
self.heun_sigmas = np.asarray(sigmas[next_timesteps_indices[:-1]].tolist() + [sigmas[0]])
# Convert to torch tensors
self.start_timesteps = torch.from_numpy(self.start_timesteps).long()
self.next_timesteps = torch.from_numpy(self.next_timesteps).long()
self.heun_betas = torch.from_numpy(self.heun_betas)
self.heun_sigmas = torch.from_numpy(self.heun_sigmas)
def to(self, device):
self.start_timesteps = self.start_timesteps.to(device)
self.next_timesteps = self.next_timesteps.to(device)
self.heun_betas = self.heun_betas.to(device)
self.heun_sigmas = self.heun_sigmas.to(device)
return self
def step(self, x_t, derivative_t, pred_x_next, pred_noise_next, timestep_indices):
start_timestep = self.start_timesteps[timestep_indices].float()
next_timestep = self.next_timesteps[timestep_indices].float()
d_t = (next_timestep - start_timestep) / self.num_train_timesteps
d_t = reshape_tensor_like(d_t, x_t.shape)
beta = self.heun_betas[timestep_indices]
beta = reshape_tensor_like(beta, x_t.shape)
sigma = self.heun_sigmas[timestep_indices]
sigma = reshape_tensor_like(sigma, x_t.shape)
pred_x_next_coeff = -0.5 * beta
pred_noise_next_coeff = 0.5 * (1 / sigma) * beta
derivative_next = pred_x_next_coeff * pred_x_next + pred_noise_next_coeff * pred_noise_next
x_next = x_t + 0.5 * d_t * (derivative_t + derivative_next)
return x_next
def log_validation(vae, args, accelerator, weight_dtype, step, unet=None, is_final_validation=False):
logger.info("Running validation... ")
pipeline = StableDiffusionXLPipeline.from_pretrained(
args.pretrained_teacher_model,
vae=vae,
scheduler=LCMScheduler.from_pretrained(args.pretrained_teacher_model, subfolder="scheduler"),
revision=args.revision,
torch_dtype=weight_dtype,
).to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
pipeline.scheduler.config.num_original_inference_steps = args.num_discr_timesteps
to_load = None
if not is_final_validation:
if unet is None:
raise ValueError("Must provide a `unet` when doing intermediate validation.")
unet = accelerator.unwrap_model(unet)
state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet))
to_load = state_dict
else:
to_load = args.output_dir
pipeline.load_lora_weights(to_load)
pipeline.fuse_lora()
if args.enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
pipeline.unet.eval()
instance_metrics = InstanceMetrics(accelerator.device)
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
validation_prompts = [
"cute sundar pichai character",
"robotic cat with wings",
"a photo of yoda",
"a cute creature with blue eyes",
]
image_logs, clip_scores, aesthetic_scores = [], [], []
for _, prompt in enumerate(validation_prompts):
images = []
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type, dtype=weight_dtype)
with autocast_ctx:
images = pipeline(
prompt=prompt,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.num_images_per_prompt,
generator=generator,
guidance_scale=0.0,
).images
image_logs.append({"validation_prompt": prompt, "images": images})
clip_score, aesthetic_score = instance_metrics.compute_instance_metrics(images[0], prompt)
clip_scores.append(clip_score)
aesthetic_scores.append(aesthetic_score)
avg_clip_score = sum(clip_scores) / len(clip_scores)
avg_aesthetic_score = sum(aesthetic_scores) / len(aesthetic_scores)
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
for log in image_logs:
images = log["images"]
validation_prompt = log["validation_prompt"]
formatted_images = []
for image in images:
formatted_images.append(np.asarray(image))
formatted_images = np.stack(formatted_images)
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
tracker.writer.add_scalar("clip score", avg_clip_score, step)
tracker.writer.add_scalar("aesthetic score", avg_aesthetic_score, step)
elif tracker.name == "wandb":
formatted_images = []
for log in image_logs:
images = log["images"]
validation_prompt = log["validation_prompt"]
for image in images:
image = wandb.Image(image, caption=validation_prompt)
formatted_images.append(image)
logger_name = "test" if is_final_validation else "validation"
tracker.log({logger_name: formatted_images})
else:
logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline
gc.collect()
torch.cuda.empty_cache()
return image_logs
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
scaled_timestep = timestep_scaling * timestep
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
return c_skip, c_out
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
t = torch.nn.functional.relu(t) # Zero negative timesteps
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def reshape_tensor_like(a, x_shape):
b, *_ = x_shape
return a.reshape(b, *((1,) * (len(x_shape) - 1)))
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
# ----------Model Checkpoint Loading Arguments----------
parser.add_argument(
"--pretrained_teacher_model",
type=str,
default=None,
required=True,
help="Path to pretrained LDM teacher model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_model_name_or_path",
type=str,
default=None,
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
)
parser.add_argument(
"--teacher_revision",
type=str,
default=None,
required=False,
help="Revision of pretrained LDM teacher model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained LDM model identifier from huggingface.co/models.",
)
# ----------Training Arguments----------
# ----General Training Arguments----
parser.add_argument(
"--output_dir",
type=str,
default="lcm-xl-distilled",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
# ----Logging----
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
# ----Checkpointing----
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
# ----Image Processing----
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--resolution",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--interpolation_type",
type=str,
default="bilinear",
help=(
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
# ----Dataloader----
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
# ----Batch Size and Training Steps----
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
# ----Learning Rate----
parser.add_argument(
"--learning_rate",
type=float,
default=1e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
# ----Optimizer (Adam)----
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
# ----Diffusion Training Arguments----
# ----Latent Consistency Distillation (LCD) Specific Arguments----
parser.add_argument(
"--w",
type=float,
default=8.5,
required=False,
help=(
"The guidance scale value for guidance scale sampling of the teacher. Note that we are using the Imagen CFG"
" formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as"
" compared to the original paper."
),
)
parser.add_argument(
"--solver",
type=str,
default="ddim",
choices=["ddim", "euler", "heun"],
help="The ODE solver to use for the teacher model",
)
parser.add_argument(
"--num_discr_timesteps",
type=int,
default=1000,
help="The number of ODE discretization steps",
)
parser.add_argument(
"--loss_type",
type=str,
default="l2",
choices=["l2", "huber"],
help="The type of loss to use for the LCD loss.",
)
parser.add_argument(
"--huber_c",
type=float,
default=0.001,
help="The huber loss parameter. Only used if `--loss_type=huber`.",
)
parser.add_argument(
"--lora_rank",
type=int,
default=64,
help="The rank of the LoRA projection matrix.",
)
parser.add_argument(
"--lora_alpha",
type=int,
default=64,
help=(
"The value of the LoRA alpha parameter, which controls the scaling factor in front of the LoRA weight"
" update delta_W. No scaling will be performed if this value is equal to `lora_rank`."
),
)
parser.add_argument(
"--lora_dropout",
type=float,
default=0.0,
help="The dropout probability for the dropout layer added before applying the LoRA to each layer input.",
)
parser.add_argument(
"--lora_target_modules",
type=str,
default=None,
help=(
"A comma-separated string of target module keys to add LoRA to. If not set, a default list of modules will"
" be used. By default, LoRA will be applied to all conv and linear layers."
),
)
parser.add_argument(
"--vae_encode_batch_size",
type=int,
default=8,
required=False,
help=(
"The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE."
" Encoding or decoding the whole batch at once may run into OOM issues."
),
)
parser.add_argument(
"--timestep_scaling_factor",
type=float,
default=10.0,
help=(
"The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The"
" higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically"
" suffice."
),
)
# ----Mixed Precision----
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
# ----Training Optimizations----
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
# ----Distributed Training----
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
# ----------Validation Arguments----------
parser.add_argument(
"--validation_steps",
type=int,
default=200,
help="Run validation every X steps.",
)
parser.add_argument("--num_inference_steps", type=int, default=4, help="Number of inference steps during validation")
parser.add_argument("--num_images_per_prompt", type=int, default=4, help="Number of images to generate per prompt")
# ----------Huggingface Hub Arguments-----------
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
# ----------Accelerate Arguments----------
parser.add_argument(
"--tracker_project_name",
type=str,
default="text2image-fine-tune",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(prompt_batch, text_encoders, tokenizers, is_train=True):
prompt_embeds_list = []
captions = []
for caption in prompt_batch:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
with torch.no_grad():
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_inputs = tokenizer(
captions,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(
text_input_ids.to(text_encoder.device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
return prompt_embeds, pooled_prompt_embeds
def main(args):
if args.report_to == "wandb" and args.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
split_batches=True, # It's important to set this to True when using webdataset to get the right number of steps for lr scheduling. If set to False, the number of steps will be devide by the number of processes assuming batches are multiplied by the number of processes
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name,
exist_ok=True,
token=args.hub_token,
private=True,
).repo_id
# 1. Create the noise scheduler and the desired noise schedule.
#### REPLACE WITH EulerDISCREte
noise_scheduler = DDPMScheduler.from_pretrained(
args.pretrained_teacher_model, subfolder="scheduler", revision=args.teacher_revision
)
# DDPMScheduler calculates the alpha and sigma noise schedules (based on the alpha bars) for us
alpha_schedule = torch.sqrt(noise_scheduler.alphas_cumprod)
sigma_schedule = torch.sqrt(1 - noise_scheduler.alphas_cumprod)
# Initialize the DDIM ODE solver for distillation.
heun_solver = None
if args.solver == "ddim":
solver = DDIMSolver(
alphas=alpha_schedule.numpy(),
sigmas=sigma_schedule.numpy(),
num_train_timesteps=noise_scheduler.config.num_train_timesteps,
num_discr_timesteps=args.num_discr_timesteps,
)
# Initialize the Euler ODE solver for distillation.
elif args.solver == "euler":
solver = EulerSolver(
betas=noise_scheduler.betas.numpy() * noise_scheduler.config.num_train_timesteps,
sigmas=sigma_schedule.numpy(),
num_train_timesteps=noise_scheduler.config.num_train_timesteps,
num_discr_timesteps=args.num_discr_timesteps,
)
# Initialize the Heun Solver for distillation as the corrector for Euler
elif args.solver == "heun":
solver = EulerSolver(
betas=noise_scheduler.betas.numpy() * noise_scheduler.config.num_train_timesteps,
sigmas=sigma_schedule.numpy(),
num_train_timesteps=noise_scheduler.config.num_train_timesteps,
num_discr_timesteps=args.num_discr_timesteps,
)
heun_solver = HeunSolver(
betas=noise_scheduler.betas.numpy() * noise_scheduler.config.num_train_timesteps,
sigmas=sigma_schedule.numpy(),
num_train_timesteps=noise_scheduler.config.num_train_timesteps,
num_discr_timesteps=args.num_discr_timesteps,
)
# 2. Load tokenizers from SDXL checkpoint.
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_teacher_model, subfolder="tokenizer", revision=args.teacher_revision, use_fast=False
)
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_teacher_model, subfolder="tokenizer_2", revision=args.teacher_revision, use_fast=False
)
# 3. Load text encoders from SDXL checkpoint.
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_teacher_model, args.teacher_revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_teacher_model, args.teacher_revision, subfolder="text_encoder_2"
)
text_encoder_one = text_encoder_cls_one.from_pretrained(
args.pretrained_teacher_model, subfolder="text_encoder", revision=args.teacher_revision
)
text_encoder_two = text_encoder_cls_two.from_pretrained(
args.pretrained_teacher_model, subfolder="text_encoder_2", revision=args.teacher_revision
)
# 4. Load VAE from SDXL checkpoint (or more stable VAE)
vae_path = (
args.pretrained_teacher_model
if args.pretrained_vae_model_name_or_path is None
else args.pretrained_vae_model_name_or_path
)
vae = AutoencoderKL.from_pretrained(
vae_path,
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
revision=args.teacher_revision,
)
# 6. Freeze teacher vae, text_encoders.
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
# 7. Create online student U-Net.
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_teacher_model, subfolder="unet", revision=args.teacher_revision
)
unet.requires_grad_(False)
# Check that all trainable models are in full precision
low_precision_error_string = (
" Please make sure to always have all model weights in full float32 precision when starting training - even if"
" doing mixed precision training, copy of the weights should still be float32."
)
if accelerator.unwrap_model(unet).dtype != torch.float32:
raise ValueError(
f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
)
# 8. Handle mixed precision and device placement
# For mixed precision training we cast all non-trainable weigths to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move unet, vae and text_encoder to device and cast to weight_dtype
# The VAE is in float32 to avoid NaN losses.
unet.to(accelerator.device, dtype=weight_dtype)
if args.pretrained_vae_model_name_or_path is None:
vae.to(accelerator.device, dtype=torch.float32)
else:
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
# 9. Add LoRA to the student U-Net, only the LoRA projection matrix will be updated by the optimizer.
if args.lora_target_modules is not None:
lora_target_modules = [module_key.strip() for module_key in args.lora_target_modules.split(",")]
else:
lora_target_modules = [
"to_q",
"to_k",
"to_v",
"to_out.0",
"proj_in",
"proj_out",
"ff.net.0.proj",
"ff.net.2",
"conv1",
"conv2",
"conv_shortcut",
"downsamplers.0.conv",
"upsamplers.0.conv",
"time_emb_proj",
]
lora_config = LoraConfig(
r=args.lora_rank,
target_modules=lora_target_modules,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
)
unet.add_adapter(lora_config)
# Also move the alpha and sigma noise schedules to accelerator.device.
alpha_schedule = alpha_schedule.to(accelerator.device)
sigma_schedule = sigma_schedule.to(accelerator.device)
solver = solver.to(accelerator.device)
if heun_solver is not None:
heun_solver = heun_solver.to(accelerator.device)
# 10. Handle saving and loading of checkpoints
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
unet_ = accelerator.unwrap_model(unet)
# also save the checkpoints in native `diffusers` format so that it can be easily
# be independently loaded via `load_lora_weights()`.
state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet_))
StableDiffusionXLPipeline.save_lora_weights(output_dir, unet_lora_layers=state_dict)
for _, model in enumerate(models):
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
# load the LoRA into the model
unet_ = accelerator.unwrap_model(unet)