-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
232 lines (194 loc) · 7.41 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
import shutil
from datetime import datetime
from importlib import import_module
from pathlib import Path
import torch
import yaml
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
def load_from_config(cfg, **kwargs):
module_str, cls_str = cfg["cls"].rsplit(".", 1)
cls = getattr(import_module(module_str), cls_str)
params = cfg.get("params", {})
return cls(**params, **kwargs)
def run_model(*, network, model, model_cfg, dataset, ood_dataset, writer, out_dir, model_type):
"""Load checkpoint if available and run training if specified"""
param_count = sum(p.numel() for p in network.parameters() if p.requires_grad)
print(f"Network has {param_count} trainable parameters.")
if "checkpoint" in model_cfg:
checkpoint = torch.load(model_cfg["checkpoint"])
network.load_state_dict(checkpoint["network"])
model.global_step = checkpoint["global_step"]
print(f"Loaded checkpoint from {model_cfg['checkpoint']} "
f"at global step {model.global_step}.")
if "training" in model_cfg:
# Set up optimizer
opt = load_from_config(model_cfg["training"]["optimizer"], params=network.parameters())
if "checkpoint" in model_cfg:
opt.load_state_dict(checkpoint["optimizer"])
# Set up dataloader
loader = torch.utils.data.DataLoader(
dataset, batch_size=model_cfg["training"]["batch_size"])
if "ood_dataset" in cfg:
ood_loader = torch.utils.data.DataLoader(
ood_dataset, batch_size=model_cfg["training"]["batch_size"])
else:
ood_loader = None
# Set up metrics and tensorboard writing via callbacks
callback_kwargs = {
"dataset": dataset,
"loader": loader,
"ood_dataset": ood_dataset,
"ood_loader": ood_loader,
"writer": writer,
"model": model,
"network": network,
"optimizer": opt,
"output_dir": out_dir,
"model_type": model_type
}
train_callbacks = [
load_from_config(callback_cfg, **callback_kwargs)
for callback_cfg in model_cfg["training"]["callbacks"]
]
# Delete config options that aren't arguments for `model.train`
del model_cfg["training"]["optimizer"]
del model_cfg["training"]["batch_size"]
del model_cfg["training"]["callbacks"]
model.train(
optim=opt,
dataloader=loader,
callbacks=train_callbacks,
tqdm_level="batch",
**model_cfg["training"]
)
if "evaluation" in model_cfg:
# Set up dataloader
loader = torch.utils.data.DataLoader(
dataset, batch_size=model_cfg["evaluation"]["batch_size"])
if "ood_dataset" in cfg:
ood_loader = torch.utils.data.DataLoader(
ood_dataset, batch_size=model_cfg["evaluation"]["batch_size"])
else:
ood_loader = None
# Set up metrics and tensorboard writing via callbacks
callback_kwargs = {
"dataset": dataset,
"loader": loader,
"ood_dataset": ood_dataset,
"ood_loader": ood_loader,
"writer": writer,
"model": model,
"network": network,
"output_dir": out_dir,
"model_type": model_type
}
eval_callbacks = [
load_from_config(callback_cfg, **callback_kwargs)
for callback_cfg in model_cfg["evaluation"]["callbacks"]
]
# Callbacks that require args other than global step (ie. those meant for training)
# will not work here
for cb in eval_callbacks:
cb.call(global_step=model.global_step)
def main(cfg):
# Create subdirectory for model
time_now = datetime.now().strftime("%Y-%m-%d-%H:%M:%S")
basename = f"{time_now}-{cfg['name']}" if cfg.get("name", None) else time_now
out_dir = Path(cfg["output_root"]) / basename
out_dir.mkdir(parents=True, exist_ok=True)
shutil.copy(config_path, out_dir)
print(f"Created model directory {out_dir}")
device = torch.device("cuda")
# TensorBoard
writer = SummaryWriter(log_dir=out_dir)
writer.add_text("config", "```\n" + yaml.dump(cfg) + "```") # Log config verbatim as yaml
# Datasets
dataset = load_from_config(cfg["dataset"], transform=transforms.ToTensor())
if "ood_dataset" in cfg:
ood_dataset = load_from_config(cfg["ood_dataset"], transform=transforms.ToTensor())
else:
ood_dataset = None
if "ebm" in cfg:
ebm_cfg = cfg["ebm"]
energy = load_from_config(ebm_cfg["energy"])
ebm = load_from_config(ebm_cfg, energy=energy, device=device)
run_model(
network=energy,
model=ebm,
model_cfg=ebm_cfg,
dataset=dataset,
ood_dataset=ood_dataset,
writer=writer,
out_dir=out_dir,
model_type="ebm",
)
if "implicit_manifold" in cfg:
implicit_cfg = cfg["implicit_manifold"]
mdf = load_from_config(implicit_cfg["mdf"])
manifold = load_from_config(implicit_cfg, mdf=mdf, device=device)
run_model(
network=mdf,
model=manifold,
model_cfg=implicit_cfg,
dataset=dataset,
ood_dataset=ood_dataset,
writer=writer,
out_dir=out_dir,
model_type="implicit_manifold",
)
if "constrained_ebm" in cfg:
# Build and run a constrained EBM using the manifold instantiated above
cebm_cfg = cfg["constrained_ebm"]
energy = load_from_config(cebm_cfg["energy"])
cebm = load_from_config(cebm_cfg, manifold=manifold, energy=energy, device=device)
run_model(
network=energy,
model=cebm,
model_cfg=cebm_cfg,
dataset=dataset,
ood_dataset=ood_dataset,
writer=writer,
out_dir=out_dir,
model_type="constrained_ebm",
)
if "autoencoder" in cfg:
ae_cfg = cfg["autoencoder"]
encoder = load_from_config(ae_cfg["encoder"])
decoder = load_from_config(ae_cfg["decoder"])
network = torch.nn.Sequential(encoder, decoder)
autoencoder = load_from_config(
ae_cfg, encoder=encoder, decoder=decoder, device=device)
run_model(
network=network,
model=autoencoder,
model_cfg=ae_cfg,
dataset=dataset,
ood_dataset=ood_dataset,
writer=writer,
out_dir=out_dir,
model_type="autoencoder",
)
if "pushforward_ebm" in cfg:
pebm_cfg = cfg["pushforward_ebm"]
energy = load_from_config(pebm_cfg["energy"])
pebm = load_from_config(pebm_cfg, autoencoder=autoencoder, energy=energy, device=device)
run_model(
network=energy,
model=pebm,
model_cfg=pebm_cfg,
dataset=dataset,
ood_dataset=ood_dataset,
writer=writer,
out_dir=out_dir,
model_type="pushforward_ebm",
)
parser = argparse.ArgumentParser()
parser.add_argument("config_path", type=str)
args = parser.parse_args()
if __name__ == "__main__":
config_path = args.config_path
with open(config_path, "r") as f:
cfg = yaml.safe_load(f)
main(cfg)