-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathlinear_svgd.yaml
53 lines (46 loc) · 1 KB
/
linear_svgd.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# @package _global_
#
# to execute this experiment run:
# python train.py experiment=linear_bayes
defaults:
- override /model: bayesian_linear_velocity
- override /datamodule: linear_unidentifiable_velocity.yaml
- override /logger:
- wandb
- csv
- override /trainer: gpu
name: "linear_svgd_2"
seed: 13
datamodule:
batch_size: 500
p: 20
vars_to_deidentify: [0, 1, 2]
sigma: 0.0
sparsity: 0.9
system: "linear"
T: 2
seed: 13
# best
model:
lr: 2.5e-3
alpha: 1e-4 # TRAIN (1e-4) TEST final alpha_t: (bs=500 -> 0.010959014554237987) (bs=100 -> 0.02191346617949794)
svgd_reg: 0 # 1e5
l1_reg: 500 # 1e-1
l2_reg: 0
kl_reg: 0 # 1e-5
svgd_gamma: 3000 # -1 to set to med
temperature: 0.01
n_ens: 1024
eval_batch_size: 1024
k_hidden: 20
hyper: "linear"
hyper_hidden_dim: [64, 64, 64]
bias: True
svgd: True
optimizer: "adam"
trainer:
max_epochs: 1000
check_val_every_n_epoch: 5
logger:
wandb:
tags: ["kl", "analytic", "linear", "svgd", "${name}", "v_1"]