forked from linogaliana/python-datascientist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreference.bib
365 lines (316 loc) · 10.9 KB
/
reference.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
@book{Turrell2021,
title = "Coding for Economists",
author = "Turrell, Arthur, and contributors",
year = 2021,
publisher = "Online",
url = "https://aeturrell.github.io/coding-for-economists"
}
@article{chen2008brief,
title={A brief history of data visualization},
author={Chen, Chun-houh and H{\"a}rdle, Wolfgang and Unwin, Antony and Friendly, Michael},
journal={Handbook of data visualization},
pages={15--56},
year={2008},
publisher={Springer}
}
@misc{field2012discovering,
title={Discovering Statistics Using R},
author={Field, A},
year={2012},
publisher={Sage}
}
@software{Lisa_psyTeachR_Book_Template_2021,
author = {Lisa, DeBruine},
month = oct,
title = {{psyTeachR Book Template}},
url = {https://github.com/psyteachr/template/},
version = {2.1},
year = {2021}
}
@book{wilkinson2012grammar,
title={The grammar of graphics},
author={Wilkinson, Leland},
year={2012},
publisher={Springer}
}
@book{geron2022hands,
title={Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow},
author={G{\'e}ron, Aur{\'e}lien},
year={2022},
publisher={" O'Reilly Media, Inc."}
}
@article{chen2008brief,
title={A brief history of data visualization},
author={Chen, Chun-houh and H{\"a}rdle, Wolfgang and Unwin, Antony and Friendly, Michael},
journal={Handbook of data visualization},
pages={15--56},
year={2008},
publisher={Springer}
}
@article{breiman2001random,
title={Random forests},
author={Breiman, Leo},
journal={Machine learning},
volume={45},
pages={5--32},
year={2001},
publisher={Springer}
}
@article{breiman1996bagging,
title={Bagging predictors},
author={Breiman, Leo},
journal={Machine learning},
volume={24},
pages={123--140},
year={1996},
publisher={Springer}
}
@book{wickham2023r,
title={R for data science},
author={Wickham, Hadley and {\c{C}}etinkaya-Rundel, Mine and Grolemund, Garrett},
year={2023},
publisher={" O'Reilly Media, Inc."}
}
@misc{samuel2023computational,
title={Computational reproducibility of Jupyter notebooks from biomedical publications},
author={Sheeba Samuel and Daniel Mietchen},
year={2023},
eprint={2308.07333},
archivePrefix={arXiv},
primaryClass={cs.DL}
}
@book{vanderplas2016python,
title={Python data science handbook: Essential tools for working with data},
author={VanderPlas, Jake},
year={2016},
publisher={" O'Reilly Media, Inc."}
}
@article{athey2019machine,
title={Machine learning methods that economists should know about},
author={Athey, Susan and Imbens, Guido W},
journal={Annual Review of Economics},
volume={11},
pages={685--725},
year={2019},
publisher={Annual Reviews}
}
@article{galianafuzzy,
title={Fuzzy matching on big-data An illustration with scanner data and crowd-sourced nutritional data},
author={Galiana, Lino and Castillo, Milena Suarez},
year={2022},
publisher={Proceedings of the 2022 "Journées de Méthodologie Statistiques"}
}
@book{dale2022data,
title={Data Visualization with Python and JavaScript},
author={Dale, Kyran},
year={2022},
publisher={" O'Reilly Media, Inc."}
}
@book{bertin1967semiologie,
title={S{\'e}miologie graphique},
author={Bertin, Jacques},
year={1967},
publisher={Mouton/Gauthier-Villars},
address={Paris}
}
@article{palsky2017semiologie,
title={La S{\'e}miologie graphique de Jacques Bertin a cinquante ans},
author={Palsky, Gilles},
journal={Visions carto (en ligne)},
year={2017}
}
@book{wilke2019fundamentals,
title={Fundamentals of data visualization: a primer on making informative and compelling figures},
author={Wilke, Claus O},
year={2019},
publisher={O'Reilly Media}
}
@misc{izsak2021train,
title={How to Train BERT with an Academic Budget},
author={Peter Izsak and Moshe Berchansky and Omer Levy},
year={2021},
eprint={2104.07705},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@book{mckinney2012python,
title={Python for data analysis: Data wrangling with Pandas, NumPy, and IPython},
author={McKinney, Wes},
year={2012},
publisher={" O'Reilly Media, Inc."}
}
@article{galiana2020segregation,
title={Residential segregation, daytime segregation and spatial frictions: an analysis from mobile phone data },
author={Galiana, Lino and S{\'e}m{\'e}curbe, Fran{\c{c}}ois and Sakarovitch, Benjamin and Smoreda, Zbigniew},
year={2020},
publisher={Insee Working Paper}
}
@inproceedings{galiana2022,
author = {Galiana, Lino and Suarez Castillo, Milena},
title = {Fuzzy Matching on Big-Data: An Illustration with Scanner and Crowd-Sourced Nutritional Datasets},
year = {2022},
isbn = {9781450392846},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3524458.3547244},
doi = {10.1145/3524458.3547244},
abstract = {Food retailers’ scanner data provide unprecedented details on local consumption, provided that product identifiers allow a linkage with features of interest, such as nutritional information. In this paper, we enrich a large retailer dataset with nutritional information extracted from crowd-sourced and administrative nutritional datasets. To compensate for imperfect matching through the barcode, we develop a methodology to efficiently match short textual descriptions. After a preprocessing step to normalize short labels, we resort to fuzzy matching based on several tokenizers (including n-grams) by querying an ElasticSearch customized index and validate candidates echos as matches with a Levensthein edit-distance and an embedding-based similarity measure created from a siamese neural network model. The pipeline is composed of several steps successively relaxing constraints to find relevant matching candidates.},
booktitle = {Proceedings of the 2022 ACM Conference on Information Technology for Social Good},
pages = {331–337},
numpages = {7},
keywords = {ElasticSearch, Fuzzy matching, Siamese neural networks, Natural language processing, Word embeddings},
location = {Limassol, Cyprus},
series = {GoodIT '22}
}
@article{inseeSemiologie,
title={Guide de sémiologie cartographique},
author={Insee},
year={2018},
publisher={Insee Working Paper}
}
@misc{strubell2019energy,
title={Energy and Policy Considerations for Deep Learning in NLP},
author={Emma Strubell and Ananya Ganesh and Andrew McCallum},
year={2019},
eprint={1906.02243},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
@article{mckinney2017apache,
title={Apache Arrow and the" 10 Things I Hate About Pandas},
author={McKinney, Wes},
journal={Blog, September},
volume={21},
year={2017}
}
@article{gabelica2022many,
title={Many researchers were not compliant with their published data sharing statement: mixed-methods study},
author={Gabelica, Mirko and Boj{\v{c}}i{\'c}, Ru{\v{z}}ica and Puljak, Livia},
journal={Journal of Clinical Epidemiology},
year={2022},
publisher={Elsevier}
}
@article{hurley2016credit,
title={Credit scoring in the era of big data},
author={Hurley, Mikella and Adebayo, Julius},
journal={Yale JL \& Tech.},
volume={18},
pages={148},
year={2016},
publisher={HeinOnline}
}
@article{charpentier2018econometrics,
title={Econometrics and machine learning},
author={Charpentier, Arthur and Flachaire, Emmanuel and Ly, Antoine},
journal={Economie et Statistique},
volume={505},
number={1},
pages={147--169},
year={2018},
publisher={Pers{\'e}e-Portail des revues scientifiques en SHS}
}
@article{MullainathanJEP,
Author = {Mullainathan, Sendhil and Spiess, Jann},
Title = {Machine Learning: An Applied Econometric Approach},
Journal = {Journal of Economic Perspectives},
Volume = {31},
Number = {2},
Year = {2017},
Month = {May},
Pages = {87-106},
DOI = {10.1257/jep.31.2.87},
URL = {https://www.aeaweb.org/articles?id=10.1257/jep.31.2.87}}
@article{salmon2010probleme,
title={Le probl{\`e}me du r{\'e}alisme des hypoth{\`e}ses en {\'e}conomie politique},
author={Salmon, Pierre},
year={2010}
}
@incollection{friedman1953methodology,
title={The methodology of positive economics},
author={Friedman, Milton},
booktitle={Essays in Positive Economics},
publisher={The University of Chicago Press},
year={1953},
address={Chicago}
}
@techreport{arcep2019,
title={L'empreinte carbone du numérique},
author={Arcep},
journal={Rapport de l'Arcep},
year={2019}
}
@misc{Reproducibilitycrisis,
doi = {10.48550/ARXIV.2207.07048},
url = {https://arxiv.org/abs/2207.07048},
author = {Kapoor, Sayash and Narayanan, Arvind},
keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Methodology (stat.ME), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Leakage and the Reproducibility Crisis in ML-based Science},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
@article{reinhart2010growth,
title={Growth in a Time of Debt},
author={Reinhart, Carmen M and Rogoff, Kenneth S},
journal={American economic review},
volume={100},
number={2},
pages={573--578},
year={2010},
publisher={American Economic Association}
}
@article{guinnane2023we,
title={We do not know the population of every country in the world for the past two thousand years},
author={Guinnane, Timothy W},
journal={The Journal of Economic History},
volume={83},
number={3},
pages={912--938},
year={2023}
}
@book{RN2020,
title = {Artificial Intelligence: A Modern Approach (4th Edition)},
author = {Stuart J. Russell and Peter Norvig},
year = {2020},
url = {http://aima.cs.berkeley.edu/},
researchr = {https://researchr.org/publication/RN2020},
cites = {0},
citedby = {0},
publisher = {Pearson},
isbn = {9781292401133},
}
@article{davenport2012data,
title={Data scientist, the sexiest job of the 21st century},
author={Davenport, Thomas H and Patil, DJ},
journal={Harvard business review},
volume={90},
number={5},
pages={70--76},
year={2012},
url={https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century}
}
@article{davenport2022data,
title={Is data scientist still the sexiest job of the 21st century?},
author={Davenport, Thomas H and Patil, DJ},
journal={Harvard Business Review},
volume={90},
year={2022},
publisher={Harvard Business Publishing}
}
@article{kapoor2023leakage,
title={Leakage and the reproducibility crisis in machine-learning-based science},
author={Kapoor, Sayash and Narayanan, Arvind},
journal={Patterns},
volume={4},
number={9},
year={2023},
publisher={Elsevier}
}