-
Notifications
You must be signed in to change notification settings - Fork 167
/
Copy pathtest_statistics_01.py
169 lines (138 loc) · 3.21 KB
/
test_statistics_01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from statistics import (mean, fmean, geometric_mean, harmonic_mean, variance,
stdev, pvariance, pstdev, mode)
from lpython import i32, f64, i64
eps: f64
eps = 1e-12
def test_mean():
b: list[i32]
b = [9, 4, 10]
j: f64
j = mean(b)
assert abs(j - 7.666666666666667) < eps
c: list[f64]
c = [2.0, 3.1, 11.1]
k: f64
k = mean(c)
assert abs(k - 5.4) < eps
d: list[i32]
d = [1, 3, 11]
l: f64
l = mean(d)
assert abs(l - 5.0) < eps
def test_fmean():
a: list[i32]
a = [9, 4, 10]
j: f64
j = fmean(a)
assert abs(j - 7.666666666666667) < eps
b: list[f64]
b = [-1.9, -13.8, -6.0, 4.2, 5.9, 9.1]
k: f64
k = fmean(b)
assert abs(k + 0.41666666666666674) < eps
def test_geometric_mean():
c: list[i32]
c = [1,2,3]
k: f64
k = geometric_mean(c)
assert abs(k - 1.8171205928321397) < eps
d: list[f64]
d = [1.1, 3.4, 17.982, 11.8]
l: f64
l = geometric_mean(d)
assert abs(l - 5.307596520524432) < eps
def test_harmonic_mean():
c: list[i32]
c = [9,2,46]
k: f64
k = harmonic_mean(c)
assert abs(k - 4.740458015267175) < eps
d: list[i32]
d = [9, 0, 46]
l: f64
l = harmonic_mean(d)
assert l == 0.0
e: list[f64]
e = [1.1, 3.4, 17.982, 11.8]
f: f64
f = harmonic_mean(e)
assert abs(f - 2.977152988015106) < eps
def test_variance():
a: list[i32]
a = [1, 2, 5, 4, 8, 9, 12]
j: f64
j = variance(a)
assert abs(j - 15.80952380952381) < eps
b: list[f64]
b = [2.74, 1.23, 2.63, 2.22, 3.0, 1.98]
k: f64
k = variance(b)
assert abs(k - 0.40924) < eps
def test_stdev():
a: list[i32]
a = [1, 2, 3, 4, 5]
j: f64
j = stdev(a)
assert abs(j - 1.5811388300841898) < eps
b: list[f64]
b = [1.23, 1.45, 2.1, 2.2, 1.9]
k: f64
k = stdev(b)
assert abs(k - 0.41967844833872525) < eps
def test_pvariance():
a: list[i32]
a = [1, 2, 5, 4, 8, 9, 12]
j: f64
j = pvariance(a)
assert abs(j - 13.551020408163266) < eps
b: list[f64]
b = [2.74, 1.23, 2.63, 2.22, 3.0, 1.98]
k: f64
k = pvariance(b)
assert abs(k - 0.34103333333333335) < eps
def test_pstdev():
a: list[i32]
a = [1, 2, 3, 4, 5]
j: f64
j = pstdev(a)
assert abs(j - 1.4142135623730951) < eps
b: list[f64]
b = [1.23, 1.45, 2.1, 2.2, 1.9]
k: f64
k = pstdev(b)
assert abs(k - 0.37537181567080935) < eps
def test_mode():
a: list[i32]
a = [3, 1, 12, 4, 0]
i: i32
i = mode(a)
assert i == 3
b: list[i32]
b = [4, 2, 4, 4, 2, 3, 5]
j: i32
j = mode(b)
assert j == 4
c: list[i32]
c = [2, 3, 4, 1, 2, 4, 5]
k: i32
k = mode(c)
assert k == 2
d: list[i32]
d = [-1, 2, -3, -5, -3, -1, 4, -2, 4, -5, -3, 4, -3]
k = mode(d)
assert k == -3
e: list[i64]
e = [i64(-1), i64(2), i64(-3), i64(-5), i64(-3), i64(-1), i64(4), i64(-2), i64(4), i64(-5), i64(-3), i64(4), i64(-3)]
l: i64 = mode(e)
assert l == i64(-3)
def check():
test_mean()
test_geometric_mean()
test_harmonic_mean()
test_fmean()
test_variance()
test_stdev()
test_pvariance()
test_pstdev()
test_mode()
check()